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Fire weather indices tailored to regional
patterns outperform global models

Check for updates
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Fire weather indices (FWIs) are widely used to assess wildfire risk, but are typically designed for
specific regions and not adapted globally. Here, we present a systematic effort to generate country-
specific FWIs that capture regional fire-weather patterns. We evaluate three widely used indices
across countries, finding that theCanadian FWI performs best overall (ROCAUCof 0.69). Tailoring the
index to each country with a Genetic Algorithm significantly improves its accuracy, raising the ROC
AUC from 0.69 to 0.79. To further improve accuracy while maintaining interpretability, we develop a
single Decision Tree model per country, achieving an ROC AUC of 0.86. Attempts to develop a single
global Decision Tree yielded substantially lower accuracy, highlighting the limitations of universal
models and the importance of capturing regional characteristics such asweather patterns, vegetation
types, and topography for accurately predicting wildfire risk. Adapting FWIs regionally is crucial under
accelerating climate change conditions.

Wildfires pose risks to wildlife and human societies throughout the globe1,2,
while also contributing to increasing emissions of aerosols and greenhouse
gases into the atmosphere3. Recently, the frequency of extreme wildfires has
substantially increased due to Climate Change4. A key element of wildfire
preparedness is effective wildfire prediction5. Prediction of wildfire occur-
rence provides firefighters with an opportunity to extinguish wildfires in
their early stages and provide life-saving alerts to populations at risk6. A
common method of estimating wildfire risk is with Fire Weather Indices
(FWIs), which are based on various meteorological factors and fuel loads
and provide a fire danger indicator7,8.

A growing body ofwork has successfully demonstrated the potential of
Machine Learning (ML) models to effectively predict wildfire risk, as many
studies have developed either regional ML models6,9,10 or global ones11–14,
commonly outperforming rule-based or analytical-based models15.
Machine learning models offer the flexibility to incorporate region-specific
ecological drivers of wildfire activity, such as vegetation type, fuel moisture
dynamics, ignition sources, and land-use patterns, which vary widely across
landscapes and interact in complex, nonlinear ways. Given that wildfire
occurrence emerges from the interplay of multiple factors across scales,
machine learningmodels are particularly well-suited to this task, as they can
learn these intricate relationships directly from the data11–14. By aligning
model inputs and structure with ecological variability, ML approaches can
more effectively capture local fire regimes and improve predictive
performance.

However, despite their strong performance, ML models have not
replaced FWIs in practice. Their limited adoption is likely due to the

accessibility, simplicity, and explainability of traditional FWIs, which have
been refined over decades of domain knowledge. Traditional FWIs are
trusted by practitioners, while ML models are often viewed as “black-box”
solutions, lacking transparency and interpretability16. This hesitancy
underscores the need to build on established domain knowledge while
improving model adaptability and performance17.

Several different FWIs have been developed and used over the years.
Probably the most common index is the Canadian Forest Fire Weather
Index (from here on referred to as the Canadian FWI)7,18. This index has
been applied and evaluated in different regions around the globe19–21.
Throughout the years, other fire weather indices have been developed. Two
notable mentions are The National Fire Danger Rating System (NFDRS)22,
from here on referred to as the American FWI, and the McArthur’s Forest
Fire Danger Index developed in Australia, from here on referred to as the
Australian FWI23. These three well-established indices are commonly used
in many wildfire prediction applications7,8,24, though we acknowledge that
many additional indices have been developed.

In some cases, the original index has been adapted to specific
regions25,26. Wildfire risk is highly region-dependent, influenced by local
climate patterns, vegetation types, landmanagement practices, and ignition
sources (e.g., lightning versus anthropogenic ignitions27). Recent research
has highlighted this regional variability by grouping global forest ecoregions
into 12 distinct pyromes, which represent regions where wildfire patterns
are driven by similar climatic, human, and vegetation controls28. Hence,
adapting wildfire prediction models to country-specific conditions would
allow us to improve their accuracy and relevance. Regional adaptation
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allowsmodels to integrate localmeteorological patterns, fuel characteristics,
and historical fire data, resulting in more reliable and actionable wildfire
forecasts. In addition, country-specificmodels can better alignwith localfire
management strategies and operational needs, facilitating quicker andmore
effective responses to wildfire threats. To the best of our knowledge, this
adaptation has not been performed on a global scale. Namely, the effec-
tiveness of the FWIs could be inferior in different regions than those in
which it was initially developed.

In this study, we provide three main contributions. First, we provide a
global evaluation of three widely used Fire Weather Index systems, com-
paring their predictive performance across countries and identifying the
most effective FWI in each region. To support this analysis, we present a
comprehensive comparative map. Second, we use a Genetic Algorithm
(GA)29 to calibrate the Canadian FWI to different countries. This approach
preserves the established formula while optimizing it for local conditions,
leveraging domain knowledge to improve accuracy. Third, we develop an
ML-based model to predict wildfires based on the three FWI systems. To
make this index accessible and easy to use, we use Knowledge Distillation30

to convert the model into a simplified and explainable Decision Tree (DT)
model31 for each country. Providing an explainableDT for each country can
enhance trust in the model, which is essential for its adoption32.

Results
Benchmarking of the traditional FWIs
We begin by comparing the performance of the three FWI systems. In
Fig. 1a–c, we present the ROC AUC scores of the three FWIs for each
country. Figure 1d presents the highest-performing index in each country.
The analysis reveals that the Canadian FWI obtains the highest predictive
performance in the largest number of countries (91 of 160,meanROCAUC
of 0.69 across countries), including Canada (in which it was initially
developed). The Australian and American indices obtain lower scores of
0.65 and 0.61, respectively. The performance of the different FWIs is sub-
stantially different across countries and regions. For instance, we note that
theCanadianFWIhas a relatively goodperformance in theTropics. In some
countries, such as Australia, the predictive performance of all three FWIs is

low. The full results with the performance of each index in each country are
presented in the Supplementary Information.

Calibration of the traditional FWIs
Next, we present the results of our proposed FWI based on GA-assisted
calibration of the Canadian FWI. In Fig. 2a, we provide the ROC AUC
scores of the calibrated FWI in each country. The mean performance of
this model across countries is 0.81 for the training cohort and 0.79 for
the testing cohort, compared to the 0.69 score of the original Canadian
FWI. This substantial increase demonstrates the potential improve-
ment of wildfire risk prediction by calibrating the FWI for each country.
In Fig. 2b, we present the best-performing index among the three tra-
ditional FWIs and our calibrated Canadian FWI in each country. We
provide the parameters for the developed index in each country in the
appendix.

MLmodels
We next present the results of the country-specific Decision Tree
developed based on an ML model. In Fig. 3a, we outline the ROC AUC
scores of thismodel in each country. Despite the simplicity of this model,
it obtains an excellent score of 0.86, compared to 0.91 of the full (and less
explainable) ML model. Figure 3b compares the performance of the
proposed DT with the three traditional indices. Our results reveal that it
is preferable to the traditional FWIs in almost every country (over 90%),
globally. We emphasize that the DT, in contrast to the full ML model, is
an explainable and transparentmodel with only five splits. The results for
the LightGBM model itself are presented in the Supplementary Infor-
mation (Supplementary Fig. 1). The DT for each country is provided as a
separate file. To test temporal robustness, we repeated the analysis using
each year (2014–2020) as a hold-out test set. Performance dropped
slightly (from 0.86 to 0.82) but remained well above traditional FWIs,
confirming the model’s generalizability over time. We also validated the
model across different land cover classes and found that Decision Trees
consistently outperformed the traditional indices in each and every class
examined (see ROC AUC scores in Supplementary Table 3).

Fig. 1 | Comparison of the FWI systems. ROC AUC values for a Canadian FWI, b Australian FWI, c American FWI, and d best performing FWI among the three FWI
systems. The figure was generated using Python’s Cartopy library.
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To assess the significance of country-specific models, we repeated this
process without dividing the data by country, aiming to create a single DT
model for all countries combined. Although this global model slightly
outperformed traditional FWIs, it performed remarkably worse than the
country-specific DTs. Specifically, the mean ROC AUC dropped from 0.86
to 0.71, underscoring the importance of regional characteristics and the
need for dedicated FWIs.

To better understand which types of input data contribute most to
model performance, we conducted a series of ablation studies. These
experiments isolate the impact of vegetation, meteorological variables, and
FWIs—both individually and in combination—on predictive accuracy. The
results of these experiments, presented in Fig. 4 and Supplementary Table 2,
highlight the complementary value of these feature groups and underscore
the importanceof integratingdiverse environmental driverswhenmodeling
wildfire risk.

Comparison of the models
Next, we present the improvement (change in ROC AUC) of the two
models in each country, compared to the three traditional FWIs.
Figure 5 presents a country-level comparison of the calibrated FWI and
DT against the three traditional FWIs. The improvement of the cali-
brated FWI is consistent almost globally when compared to the Aus-
tralian FWI (Fig. 5b) and the American FWI (Fig. 5c). Its improvement
relative to the Canadian FWI varies by region, with the most notable
gains observed in Africa, South America, and South Asia (Fig. 5a). In
contrast, the performance of the DT is consistently (for over 98% of the
countries) better than the traditional FWIs, including the Canadian
FWI which obtained the highest performance among the three systems
(Fig. 5d–f). Finally, in Table 1 we summarize the ROC AUC scores for
all the models in the paper.

Discussion
Climate and human factors jointly shape global wildfire patterns,
though their interactions vary regionally33. Wildfires typically occur
when critical thresholds related to ignition, fuel, and drought are
crossed, but the extent and severity of fires are also strongly influ-
enced by human activity and landscape structure34,35. Empirical
research consistently identifies fuel availability, fuel continuity, and
atmospheric humidity as key drivers of wildfire regimes, whereas
ignitions are comparatively less limiting36. Moreover, recent work
shows that climate change has significantly increased the frequency
and intensity of fire weather globally37,38, and even the duration of fire
seasons34. This increase is especially significant in extratropical for-
ests and high-latitude regions28, though the resulting burned area
remains highly dependent on ecological and anthropogenic factors37.
Globally, forest fire carbon emissions have risen by 60% over the past
two decades28.

A critical aspect of effective wildfire management is the ability to
reliably predict wildfire occurrence and behavior39. Wildfire prediction is

Fig. 2 | Performance of the calibrated FWI. a ROCAUC by country for Calibrated
FWI and b best performing FWI among the calibrated FWI and the three original
FWI systems. The figure was generated using Python’s Cartopy library.

Fig. 3 | Performance of the Decision Tree FWI. a ROC AUC by country for DT
FWI and b best performing FWI among the DT FWI and the three original FWI
systems. The figure was generated using Python’s Cartopy library.

Fig. 4 | Summary of ROC AUC scores from the ablation experiments. The DT
model using the full feature set achieves the highest performancewith a score of 0.86.
When using only one feature group—vegetation, meteorological variables, or fire
weather indices (FWIs)—performance drops to 0.80. Combining any two groups
yields intermediate results, with ROC AUC scores ranging from 0.83 to 0.85.
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particularly challenging due to the complex interplay of weather, fuel
availability, and ignition sources, many of which are human-induced and
highly variable across regions34. Traditional fire forecasts rely heavily on fire
weather indices, often overlooking critical fuel and ignition components,
which limits their ability to predict actual fire occurrence40. Recent advances
in machine learning and remote sensing now offer the potential for more

reliable, global-scale fire prediction systems that can learn from both phy-
sical andhuman-drivenpatterns, bridging key gaps in current earlywarning
capabilities39,41.

In this study, we proposed amethod to develop country-specific FWIs
using either Genetic Algorithms or ML-based Decision Tree models.
Initially, we compared the performance of three widely used FWIs—the
Canadian FWI18, the American Burning Index22, and the Australian
McArthur Index23, across different countries. Our analysis revealed that
different indices performbetter in different regions, with theCanadian FWI
achieving the highest performance in most countries. This result, which
aligns with its widespread use7, suggests that it could serve as a strong
baseline for further refinement. To further improve its performance, we
employed GA-based optimization to calibrate the Canadian FWI’s para-
meters for each country, enhancing its predictive power and increasing its
ROC AUC from 0.69 to 0.79.

Additionally, we used an ML approach to develop a single DT model
for each country. DTs are among the most explainable ML models42,43,
making them well-suited for practical applications. We leveraged Knowl-
edge Distillation44 to convert the LightGBM model into a DT with a max-
imumdepth of 5, achieving a balance between accuracy and explainability45.

Fig. 5 | Relative improvements in performance by country. Differences in ROC
AUC score by country for a calibrated versus Canadian FWI, b calibrated versus
Australian FWI, c calibrated versus American FWI, d DT versus Canadian FWI,

e DT versus Australian FWI, and f DT versus American FWI. The figure was
generated using Python’s Cartopy library.

Table 1 | Mean ROC AUC scores for all models in the paper

Model Mean ROC AUC

Canadian FWI 0.69

Australian FWI 0.65

American FWI 0.61

Calibrated FWI 0.79

Global Decision Tree 0.71

LightGBM 0.91

Decision Tree 0.86
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This approach ensures that wildfire risk prediction remains transparent and
accessible while retaining much of the predictive power of the original ML
model, providing a practical tool for fire management practitioners.

The results highlight the potential for region-specific adaptation in
wildfire risk assessment. While traditional FWIs have been applied globally
with limited customization, our findings show that country-level calibration
can significantly improve their effectiveness. The GA-calibrated Canadian
FWI achieved higher predictive performance in most regions compared to
the uncalibrated versions of all three indices, demonstrating that parameter
tuning can yield substantial improvements without reducing explainability.
Moreover, the ML model consistently outperformed the three traditional
indices, reinforcing the potential of data-driven approaches in wildfire fore-
casting.However, the continued reliance on traditional FWIs, evenwhenML
models offer superior performance, underscores the importance of explain-
ability in operational decision-making. By applying Knowledge Distillation,
we converted theMLmodel into a simplifiedDTwith onlyfive splits,making
it more accessible while retaining much of the predictive power.

Our results emphasize the importance of developing country-specific
models for wildfire prediction46. Recent research has shown that global forest
ecoregions can be grouped into 12 distinct pyromes, highlighting how
regional differences in climate, human activity, and vegetation drive wildfire
patterns28.To further illustrate this,wedevelopeda single globalDTusingdata
from all countries combined. Although this global model outperformed tra-
ditional FWIs, its mean ROC AUC dropped from 0.86 to 0.71 compared to
country-specific models, underscoring the impact of regional variability on
prediction accuracy. This decline reinforces the value of adapting models to
local environmental, climatic, and geographic conditions, as global approa-
ches often fail to capture region-specific fire dynamics. Together, these find-
ingshighlight that incorporating local characteristics throughcountry-specific
models is essential for improving wildfire prediction accuracy and reliability.

Despite these advances, several challenges remain. Although our models
achieved a significant improvement over all three traditional FWIs, they still
underperformed when compared to the full ML model. This highlights a
fundamental trade-off between accuracy and explainability—while our
approachenhancespredictivepower, itdoes sowithout reducingexplainability,
which could foster trust in the model32. Additionally, while the GA-calibrated
model improved predictive performance in most countries, including on the
test cohort, in some cases, it did not outperform the baseline FWI. In contrast,
the DT model consistently achieved improvement across nearly all countries,
suggesting that leveraging various inputs is a more robust approach in certain
regions. Additionally, our choice to divide regions by country aligns with
practical needs for wildfire management but represents a simplification of
underlying climate and ecological patterns. In some cases, such as Alaska
within the USA, a country-based division may be less suitable. In other cases,
heterogeneous vegetation types may limit the effectiveness of country-specific
fire indices, particularly in large countries such as the United States, Brazil,
China, and Australia. To address this, we also provide an alternative analysis
based on land cover classification and find that Decision Trees outperform
traditional indices in every land cover class examined. The full ROC AUC
scores are presented in Supplementary Table 3. Finally, some small countries
lackedsufficientdata to traina reliabledata-drivenmodel.Althoughweapplied
a threshold of 50 observations, countries with slightlymore datamay still yield
noisy results in practice. Future research should explore alternative regional
divisions, such as continent-based groupings or biomes, to assess whether they
offer further improvements in predictive accuracy and applicability.

Taken jointly, the findings of this study have important implications
for wildfire preparedness and management. By adapting FWIs to local
conditions, policymakers and emergency responders can improve early
warning systems, optimize resource allocation, and enhance fire mitigation
strategies. Given the increasing intensity and frequency of fire weather due
to climate change, there is a pressing need for more adaptive, data-driven
risk assessment tools. The approach presented here provides a foundation
for future efforts to refine and deploy country-specific wildfire prediction
models, balancing the trade-offs between accuracy, interpretability, and
usability.

Methods
Data
We follow the data acquisition process of Shmuel and Heifetz40. We obtain
wildfire data from Artés et al.47. The dataset consists of Shapefiles repre-
senting daily-burned polygons at the individual fire level with global cov-
erage. These polygons are provided at a 250-m resolution. To estimate
wildfire occurrence, we aggregate the data into a 0.25° global grid with daily
binary values, where a value of 1 indicates the ignition of a new fire in a
specific region and time, while a value of 0 denotes no new fire activity. The
dataset captures all global wildfires from 2014 to 2020, comprising over
seven million distinct wildfires. Since burned observations are significantly
outnumbered by unburned observations, we apply random undersampling
to balance the dataset, ensuring the number of unburned observations
matches the number of burned observations48. As a robustness test, we
employ an ensemble balancing approach, repeating the undersampling
procedure across 10 independent runs, each with a different random seed.
This allows us to capture variability introduced by the sampling process and
assess the stability of model performance. The consistency of results across
runs, summarized in Supplementary Fig. 2, demonstrates that our conclu-
sions are robust to the specific choice of non-fire samples.

We obtain surface temperature, humidity, precipitation, and 10-m
windvelocity from theERA5globalReanalysis49.Wealso calculate themean
precipitation in themonth before each observation as well as the number of
days since the last precipitation, as these have been shown to affect wildfire
risk50. All data on Fire Weather Indices was obtained from the Copernicus
emergency management service51. We include three vegetation variables:
NDVI, obtained from MODIS52, as well as low and high vegetation cover
obtained from the ERA5 dataset49. We follow previous studies that have
demonstrated the effect of population density on wildfire probability53 and
add a population density variable54.

Methods
We partitioned the dataset by country using the Cartopy library55 and split
each country’s data into training (80%) and testing (20%) cohorts. The
testing data was reserved for final model evaluation to prevent overfitting
and ensure an unbiased assessment. As a robustness check, we also con-
ducted a leave-one-year-out validation for the years 2014–2020: in each
iteration, data from one year was excluded from training and used solely for
testing, while the model was trained on data from all other years. This
approach allowedus to assess the temporal generalizabilityof themodels and
ensure that performance was not reliant on specific year-to-year patterns.

Countries with fewer than 50 observations were removed from the
dataset, as this number is too low for a reliable estimation. The majority of
countries (160) met this criterion and were included in the analysis. The
number of observations for each country is reported in Supplementary
Table 1. We note that the 50-observation threshold is somewhat arbitrary,
and some countries still have relatively few observations; as a result, the
corresponding results may be noisier and less reliable for these countries.

To evaluate the predictive performance of the different FWIs, we
trained a logistic regression model using each FWI as the predictor and
assessed its ability to distinguish between wildfire and non-wildfire obser-
vations based on the receiver operating characteristic—area under the curve
(ROCAUC) score56. ROCAUCquantifies howeffectively amodel separates
fire events fromnon-fire events,with 1.0 indicatingperfect classification and
0.5 representing randomguessing. TheGAandMLmodels, described in the
following paragraphs, were evaluated using the same testing framework to
ensure comparability across methods. Figure 6 provides an overview of the
methodology used in this study.

The Canadian FWI system consists of several components18. The
build-up index (BUI) is calculated based on the duff moisture code (DMC)
and the drought code (DC):

BUI ¼ 0:8 � DMC �DC
DMCþ 0:4 � DC for DMC⩽ 0:4 � DC ð1Þ
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BUI ¼ DMC� 1� 0:8 � DC
DMCþ 0:4 �DC

� �
� 0:92þ 0:0114 �DMCð Þ1:7� �

for DMC> 0:4 � DC

The initial spread index (ISI) is calculatedusingwind speed and thefine
fuel moisture code (FFMC):

m ¼ 147:2 � 101� FFMC
59:5þ FFMC

f ðUÞ ¼ e0:05039�U

f ðFÞ ¼ ð91:9 � e�0:1386�mÞ � 1þ m5:31

4:93 � 107
� �

ISI ¼ 0:208 � f Uð Þ � f Fð Þ

The final fire weather index (FWI) is:

FWI ¼ 0:434 � lnðISIÞ þ 0:537 � lnðBUIÞ � 1:233

where FFMC fine fuel moisture code (dimensionless), DMC duff moisture
code (dimensionless), DC drought code (dimensionless), U wind speed at
10m height (km/h), BUI build-up index (dimensionless), ISI initial spread
index (dimensionless), FWI fire weather index (dimensionless).

To improve predictive performance, we introduce calibrated para-
meters into the FWI formulation. These parameters are labeled explicitly
below. Calibrated build-up index:

BUI ¼ bui2 �DMC � DC
DMCþ bui3 �DC for DMC⩽0:4 � DC ð2Þ

BUI ¼ DMC� bui1� bui2 � DC
DMCþ bui3 �DC

� �
�

bui4þ bui5 �DMCð Þbui6� �
for DMC> 0:4 � DC

Calibrated ISI:

m ¼ 147:2 � 101� FFMC
59:5þ FFMC

f ðUÞ ¼ e f U1�U

f ðFÞ ¼ ðf F1 � e f F2�mÞ � 1þmf F3

f F4

� �

ISI ¼ ISI1 � f Uð Þ � f Fð Þ

Calibrated FWI:

FWI ¼ fwi1 � ln ISIð Þ þ fwi2 � ln BUIð Þ þ fwi3

Where bui1, bui2, bui3, bui4, bui5, bui6, f_U1, f_F1, f_F2, f_F3, f_F4, ISI1,
fwi1, fwi2, and fwi3 are the model’s parameters. These parameters are all
dimensionless.

To optimize the parameters of a predefined formula for maximizing
classificationperformance,we employed aGA.Thedataset consistedof four
input variables (U, FFMC, DMC, DC) and a binary class label (y). The
predefined formula utilized 15 parameters and produced an intermediate
output z= f(U, FFMC,DMC,DC).A logistic regression layerwas applied to
the formula’s output to estimate the probability of the positive class,P(y= 1|
z). The goal was to optimize the 15 parameters of the formula to maximize
the area under the receiver operating characteristic curve (AUC).

Formally, each candidate solution in the GA represented a set of 15
parameters. The initial population was generated using a warm-start
approach, where the initial parameter values were taken directly from the
original formula. To ensure diversity in the population, random perturba-
tions of 2.5%were added to these initial values, staying within a small range
around the original values. The fitness functionwas designed to evaluate the
AUCof the logistic regressionmodel based on the dataset and the formula’s
output for each candidate set of parameters. A constraint was introduced to
enforce parameter proximity to their original values. Specifically, if the
absolute relative deviation of any parameter exceeded X% from its original
value, the candidate solution was assigned a fitness of zero. This constraint
reduced the search space in each run. The GA was run multiple times with
varying constraints (1%, 10%, 50%, and no constraints), and the globally
optimal solution was selected based on training data performance.

To select candidate solutions for reproduction, we employed the
Roulette-wheel selection method57. In this approach, candidates were
selected probabilistically, with the likelihood of selection proportional to
their fitness values. To generate offspring, we applied the simulated binary
crossover (SBC) operator58 to pairs of selected candidates. SBC simulated a
single-point crossover but controlled offspring generation using a prob-
ability distribution centered around the parent solutions, governed by a
crossover index parameter. To introduce diversity and prevent premature
convergence, a polynomial mutation operator59 was employed. This
operator perturbed parameter values based on a polynomial probability
distribution, allowing for small but impactful modifications to candidate
solutions. TheGA terminated after a predefined number of generationswas
chosen to balance computation time and the ability to cover an optimum.

The optimized parameters obtained from the GA were used to com-
pute the final formula output and logistic regression predictions. The
resulting AUC was compared with the baseline AUC (calculated using the
original parameter values) to assess the effectiveness of the optimization
process. If the optimized parameters did not improve performance in a
given country, we retained the original FWI parameters for the test set.

We developed an ML model using the widely established LightGBM
library60, a gradient-boosting framework that efficiently handles large
datasets and reduces computational cost throughhistogram-based learning.
LightGBM is considered one of the state-of-the-art models in tabular data
predictions and has been shown to outperform well-established models
such as XGBoost61. Our LightGBM model was trained using 50 estimators

Fig. 6 |A schematic view of themethodology used in
this study.
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and a maximum tree depth of 8. We tested alternative hyperparameter
values, but observedno significantperformance gains in termsofROCAUC
and classification accuracy. To enhance interpretability, we applied
Knowledge Distillation62; namely, we trained a Decision Tree on the
probability estimations of the LightGBM model, limiting its maximum
depth to 5 to balance the model’s performance and explainability63. This
approach ensures that the finalmodel remains explainable while preserving
much of the predictive power of the originalMLmodel.We also evaluated a
baseline DT model trained directly on the data, without the intermediate
LightGBM step. However, this model exhibited lower predictive accuracy,
demonstrating the benefits of usingLightGBM’s learned representations.As
a result, we focus on the distilled DT model in this study.

We also performed an ablation study to assess the impact of different
input variables on the performance of country-specific DT models. Speci-
fically, we trained three variations of the DT model: (1) using only
meteorological variables, (2) incorporating both meteorological and vege-
tation data while excluding traditional Fire Weather Index (FWI) indices
and subindices, and (3) using only FWI indices and subindices. The results
of these experiments are presented in Supplementary Information (Sup-
plementary Table 2), and the full dataset, including all corresponding DT
models, is provided as separate files.

We repeated the analysis using several alternative machine learning
models and compared their performance to LightGBM. Specifically, we
evaluated XGBoost64, Random Forest65, and Logistic Regression66, all with
default hyperparameters. As the performance of XGBoost and Random
Forest was comparable to LightGBM, and Logistic Regression performed
worse, their results are not presented.

Finally, we repeated the analysis by partitioning the observations based
on land cover types rather than countries, using a land cover dataset55.While
country-based division is useful in the operational context of fire manage-
ment, it may obscure ecological differences within national boundaries. The
land cover–based analysis demonstrates that our method remains applic-
able across varying contexts, provided that each group contains a sufficient
number of observations.

Data availability
Data is provided within themanuscript or supplementary information files.

Code availability
All the code developed in this study is available on our GitHub.
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