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Preface

It all began with a coffee break on an incredibly hot summer afternoon at the
Austrian Research Centre for Forests’ tiny forest in the heart of Vienna. We, a
diverse group of researchers, had just come together as a newly formed team within
the Department for Forest Biodiversity and Nature Conservation. Our backgrounds
spanned a spectrum of expertise in biodiversity research, each of us looking back on
more than a decade of experience in distinct fields.

Heino Konrad, an expert of population genetics, had crafted genetic monitoring
programs for both endangered and common tree species. Janine Oettel brought her
expertise on species-driven communities and intricate habitat assessments to the
table. Martin Braun, immersed in forest ecosystem analysis and skilled in economic
development predictions and big data management, enriched our group. Then there
was me, Katharina Lapin, with my focus on forest conservation management, bio-
diversity indicators, and invasive biology. During these cheerful brainstorming ses-
sions, an idea took root: ecological connectivity. Our collective passion for this
concept swiftly united us across disciplines. And just as naturally, the concept
evolved into a vision for a book—this book.

As our thoughts flowed that day, the realization dawned upon us that exploring
ecological connectivity within forest ecosystems would require a global collective
effort. It was to be an endeavor that would harness local experiences and insights
from experts worldwide. So we reached out and found contributors—scientists,
practitioners, and enthusiasts who shared our fascination with the interplay of eco-
logical connectivity and forest ecosystems. Their engagement formed the bedrock
of this book.

However, it should be clearly stated that this book—Ilike the subject it delves
into—is far from complete. But then again, a work of this nature is never truly fin-
ished. Instead, we simply hope it stands as a sturdy stepping stone in the global
dialogue concerning the future management of ecological connectivity and its pro-
found value to all life on Earth.

We express our sincere gratitude to every individual who has explored the realms
of ecological connectivity—those who have ventured into its depths as well as those
who are yet to do so. It is through the continuous discovery of new research findings
and the sharing of knowledge spanning local, national, and global contexts across a
variety of sectors from conservation and biology to forest science, landscape
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management, social science, and economics that we can effectively protect the
movement of species and the flow of natural processes vital to our planet’s
well-being.

Of course, a project of this magnitude would never have reached fruition without
the meticulous attention of our publishers and the unwavering support and financial
backing from the Waldfonds of the Republic of Austria (Project ConnectPLUS,
BMLRT/1II-2021-M10/5), an initiative of the Austrian Federal Ministry for
Agriculture, Forestry, Regions, and Water Management. And last but certainly not
least, our heartfelt appreciation goes out to our families, friends, and colleagues
who have been an endless source of encouragement and support throughout our
journey to champion ecological connectivity and forest biodiversity through our
research endeavors.

In closing, we offer a humble suggestion: Take a moment to share a cup of tea or
coffee with your cherished colleagues. Allow your thoughts to meander and your
ideas to flourish—preferably in a serene outdoor setting. You might be surprised
where such moments can lead you. Thank you sincerely for embarking on this jour-
ney with us by reading this book.

P
The Editors of the book (from left to right): Katharina Lapin, Martin Braun, Janine
Oettel, and Heino Konrad (Department of Forest Biodiversity & Nature Conservation,

Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1131 Vienna,
Austria)

Warm regards,
Vienna, Austria Katharina Lapin
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Aerial view of forest patches in the south of Austria (Photo: BFW/Florian Winter)

In today’s world, climate change has emerged as a critical global concern posing a
substantial risk to biodiversity at the planetary scale (Bonebrake et al., 2019;
Deutsch et al., 2008; Portner et al., 2021). A key consequence of climate change is
the migration of species (Krosby et al., 2010; Thompson & Gonzalez, 2017; Uroy
etal., 2021), which are compelled to shift their distribution ranges due to the warm-
ing climate (Platts et al., 2019; Wilson, 2022). Remarkably, these shifts manifest
with notable disparities between species, influenced by their respective ability to
move (Honnay et al., 2002) as well as by external factors such as the availability of
habitat in sufficient quantity and quality within the landscape and by temporal limi-
tations related to climate change. Additionally, genetic diversity within species
populations and their ability to navigate through fragmented landscapes play a cru-
cial role.

The ongoing decline in biodiversity is frequently attributed to the prolonged
effects of habitat loss and fragmentation stemming from human activities (Haddad
et al., 2015). This fragmentation, in turn, impedes the movement of species in

Vii
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response to the anticipated impacts of climate change on their habitats (Taylor &
Lindenmayer, 2020). Furthermore, populations face increased pressure from human
appropriation (Doherty et al., 2021; Le Provost et al., 2021; Tucker et al., 2018),
climate change, nitrogen deposition, and biotic exchange (Sala et al., 2000). As we
deal with the simultaneous challenges of biodiversity loss and climate change, the
importance of habitat connectivity as a vital asset in our efforts becomes increas-
ingly clear.

It is important to recognize, however, that the benefits of enhancing ecological
connectivity are not evenly distributed among all species (Mony et al., 2022) and
hinge on demographic variables (Drake et al., 2022). To unlock advantages for spe-
cies with limited dispersal abilities and small populations frequently unable to
undertake migration journeys, specific planning tools, active monitoring approaches,
and tailored management strategies are crucial. This involves embracing methods
such as assisted migration and implementation of conservation measures both in
their natural habitats and in controlled environments.

Forests, which cover 31% of Earth’s land area (UNEP & FAO, 2020), occupy a
central position in the discourse on ecological connectivity. Brimming with diverse
plant, fungal, vertebrate, and invertebrate life forms, these ecosystems carry signifi-
cant importance. Even though forests are incredibly important for biodiversity
(Liang et al., 2016), climate regulation and ecosystem services, deforestation, and
forest degradation remain ongoing issues that have yet to be resolved. Common and
ongoing of deforestation and forest degradation lead to a significant decline in bio-
diversity, especially among specialist species (Sverdrup-Thygeson et al., 2017),
exacerbated by the expansion of human land use as the primary cause of these prob-
lems (Andronache et al., 2019; Collins et al., 2009; Fahrig, 2003). In this context,
ecological connectivity emerges as a vital lifeline for forest ecosystems, playing a
crucial role in biodiversity restoration and facilitating adaptation to the rapidly
changing climate conditions.

What Is Ecological Connectivity?

Ecological connectivity as defined on a global scale refers to the unimpeded move-
ment of species and the flow of natural processes that sustain life on Earth (CBD,
2021). Therefore, it also indicates the importance of ecosystems remaining con-
nected through ecological corridors without interruption. The concept encompasses
two forms of connectivity: structural connectivity, which refers to the seamless tran-
sition between ecosystems, and functional connectivity, which refers to the move-
ment of species or the flow of processes (Tischendorf & Fahrig, 2000). Over the last
two decades, numerous scientific disciplines have elaborated these two principal
perspectives with regard to habitat connectivity (Fletcher et al., 2016; Keeley
etal., 2021):

The structural connectivity approach assesses the interconnectedness of land-
scape components, evaluating the extent to which habitat patches are physically
intertwined. It quantifies habitat permeability contingent on the physical attributes
of habitat patches, disturbances, and related elements (Saura et al., 2011; Taylor
et al., 2006; Tischendorf & Fahrig, 2000). Models employing this perspective aim
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to determine areas conducive to the movement of diverse species, with a focus on
ecologically minimally altered corridors presumed to accommodate species sensi-
tive to human interference.

The functional connectivity perspective focuses on the actual dispersal capabili-
ties of species along with habitat patch dimensions and distribution and land-use
characteristics within the intervening matrix. A landscape might be functionally
connected for one species, but not for another (Wang et al., 2018). Identifying pres-
ent or future areas with functional connectivity based on known species movement
(capabilities) delineates movement corridors (Adriaensen et al., 2003; Crooks &
Sanjayan, 2006; Rudnick et al., 2012). In some instances, indicator or umbrella spe-
cies assist in prioritizing areas of high ecological connectivity (Wang et al., 2018).
Genetic methods are often used to monitor the functionality of landscape patterns
(Balkenhol et al., 2015).

The preservation of connectivity includes a spectrum of ecological strategies
aimed at connecting suitable habitat patches, thereby facilitating the interconnec-
tivity of ecological processes across multiple scales. It also involves supporting
evolutionary process connectivity, such as the exchange of genetic material (gene
flow) between populations (Fung et al., 2017; Gaitan-Espitia & Hobday, 2021).
Among these strategies, wildlife corridors emerge as a widely endorsed approach,
serving as protective pathways for species migrations. While corridors represent
linear elements, stepping stones are separate habitat patches that support the
movement of species (Formann, 1995). Due to a growing awareness of the pro-
found impacts of climate change, emphasis is being placed on the creation of
climate corridors, which are particularly interesting along elevational gradients,
enabling species to migrate in response to shifting temperature patterns (Beier,
2012; Krosby et al., 2018). In addition, they can function as linking elements
between future climate refugia.

Habitat Fragmentaiion

Incremnes in Fragmenta Decrease in Habiiat Ingraase in Distance

Habitat Connectivity

Connecting Fopulations Connecting Hablters Restare Mabitars
o ® o ® e ? e ®
Qe o o o & ®
i / g o P

Fig. 1 Schemes of habitat fragmentation and habitat connectivity. Conservation efforts targeting
restoration of habitats focus on connecting populations by aggregating patches around dispersal
sources and/or on connecting habitats via evenly distributed patches within the landscape matrix
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Why Should We Care About Ecological Connectivity?

“Everything in a healthy ecosystem is connected,” as stated by the International
Union for the Conservation of Nature (IUCN), a global network of conservation
expects. This simple notion summarizes the overwhelming scientific evidence dem-
onstrating the pivotal role of ecological connectivity in preserving biodiversity and
sustaining life on Earth.

However, strategies to preserve and enhance ecological connectivity have been
scattered and inconsistent. Countries around the globe, as well as regional and local
policymakers and practitioners, are concurrently exploring strategies (Zeller et al.,
2020) and management actions for ecological connectivity. These efforts not only
address biodiversity loss but also position ecological connectivity as a strategic ele-
ment for adaptation to climate change.

The significance of connectivity extends far beyond ensuring the survival of
migratory species (Chap. 2); it directly relates to achieving all three objectives of
the Convention on Biological Diversity (CBD). A recent assessment by IPBES
(2019) underscored the importance of connectivity for the post-2020 framework,
and its relevance extends to fulfilling the aims of other international agreements
such as the Ramsar Convention on Wetlands, the UN Convention to Combat
Desertification, and the World Heritage Convention. Connectivity positively
influences ecosystem functions and services, ensuring species preservation by
enabling movement, facilitating adaptation to environmental shifts, mitigating
human-wildlife conflicts, and countering threats arising from barriers (Fletcher
et al., 2016). The synergy between forest ecosystems and nature-based solutions is
apparent (Cohen-Shacham et al., 2016, 2019; O’Brien et al., 2023). Connectivity
serves as a foundation for numerous nature-based solutions, supporting the sustain-
able development of forest ecosystems.

Why Study Ecological Connectivity in Forest Ecosystems?

Forests host an impressive 80% of Earth’s terrestrial plants and animals (UNEP &
FAO, 2020). However, pinpointing an exact figure remains challenging due to the
evolving understanding of global biodiversity. Over the last century, land-use
changes have significantly reshaped forest landscapes. This transformation has had
profound impacts on the structure of forests and their structural and functional con-
nectivity, ultimately resulting in a substantial loss of biodiversity.

Understanding the scale, reasons, and consequences of forest connectivity is
essential for conserving both forest biodiversity and the overall functionality of eco-
systems. This includes investigating the extent of forest fragmentation, recognizing
the drivers behind this fragmentation, and deciphering the cascading effects it has
on species communities in forest ecosystems. A deep understanding of these dynam-
ics enables us to formulate effective strategies for preserving and restoring diversity
within forests and ensuring the sustainable use of resources dependent on forests. A
key challenge is addressing threats as well as ecological and socioeconomic barriers
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to ecological connectivity in forest ecosystems (Aslan et al., 2021). The implemen-
tation of the corresponding findings is crucial for the success and effectiveness of
connectivity conservation actions.

Moreover, the management of land beyond forest boundaries significantly
impacts connectivity as well. Practices like agroforestry can serve as bridges
between agriculture and sustainably managed forest landscapes, fostering connec-
tivity and preserving habitat remnants. The reverse impact of well-connected and
biodiversity-rich forests on the landscape and ecosystem processes outside of them,
as well as their socioeconomic impacts on human health and well-being, remains
largely unexplored.

What Are the Challenges to Forest Ecosystem Connectivity?

Forest ecosystem connectivity faces challenges on multiple fronts, including cli-
mate and land-use changes which disrupt migration routes and hinder species move-
ment, ultimately resulting in fragmented habitats. Extreme events such as wildfires,
windstorms, and droughts further exacerbate this development by destroying habitat
and disrupting connectivity corridors. Invasive species pose a significant threat by
altering habitat conditions and food webs, often outcompeting native species.
Pollution from various sources degrades habitat quality and affects soil health,
while unsustainable forest management practices fragment habitats through logging
activities. In addition, the expansion of infrastructure creates barriers to species
movement and increases mortality rates. Addressing the intricate interdisciplinary
dynamics and barriers that affect species movement and ecological functions within
and between ecosystems demands global strategies, collaborative efforts, and inno-
vative solutions to promote forest conservation and sustainable land use.

To effectively conserve biodiversity in protected areas, it is essential to enhance
ecological connectivity both within and among these areas. With the challenges
posed by climate change, the significance of ecological connectivity becomes even
more pronounced. This transition demands a fundamental shift in conservation
practices, with objectives and actions needing to be redefined to adopt a more inter-
connected approach.

The concept of connectivity spans various fields and reflects the numerous fac-
tors influencing forest ecosystems. Physical barriers along with declining habitat
quality and quantity contribute to shrinking forest areas, fragmented landscapes,
and habitat loss (Fahrig, 2013). However, non-physical challenges such as diseases,
invasive species, pollution, and climate change also significantly impact connectiv-
ity, potentially impeding species’ reproduction and survival.

In environments dominated by humans, barriers act as filters allowing some spe-
cies to move while blocking others. A significant challenge thus lies in accurately
assessing the mobility and habitat needs of different species and understanding
natural processes, which makes achieving forest ecosystem connectivity a complex
endeavor.



Introduction to the Book

xii

$9X0q 3y} Ul pajuasaid S1j00q dY) UT PISSNOSIP SISA[UR PIOMAIY € JO ATRUIWNS AU ], "JIOMIWERLY
sy ur paurpno saurdiosip ognuatos oY) Jurssedwoous ‘yoeordde Areurjdrosiprojur ue saxmbar swo)s£s099 15210) Ul AJIAIIOAUUOD [BIISO[099 UO JIOA ¢ *Bl4

ABojolg
UOHEBAIISUDD

sWaysAs003 15al04 jo
Auanoauuog
|eaiBojoag

80Ud|08

1BIUBWIUOIIALT

$BINsEOLL L1188l 0.0
$60UegK15ID ABBOU0IINY
|UBWSSESEE POoMpESD
o8 IS8R AEIEAP YiBUSD
uojjEnISsuaD AlsEapo)g
JussBeuBLL BIGEH
uarejuswbeL

uanEz| ol

sishjeue fafjod

yoecudde o

juswasBe jerisenuan

WSO

BRIHUNLIWOSD |#20] & snouadpu)
saoeds sl ueqin
Anjsasopoi By g Anseaog ueqin
tuawabieBus epoyayels

so|Ba1ens uoneidepy
ueneassqo yeg

toyeiBiiy pasEsy

“gauia||sa) La1sAs00T
LN RS B O
UoBRIDISaY 2dvos pUET 1580
QLT VTR R TR

wBuBYD IR



Introduction to the Book xiii

Organization of This Book

This volume aims to highlight the critical role of ecological connectivity in forest
ecosystems for biodiversity conservation in the era of climate change. It is written
for a diverse audience including students, teachers, conservation practitioners, for-
est managers, NGOs, researchers, policymakers, and interested citizens aiming to
understand the complexities in the conservation of forest biodiversity.

Comprising four distinct sections and a total of 37 chapters—each authored and
reviewed by a global consortium of experts specializing in ecological connectivity,
forest biodiversity, and forest ecosystem management—this book provides a com-
prehensive and multifaceted exploration of its subject matter. With contributions by
125 authors, it stands as a collaborative compendium at the intersection of scientific
inquiry and practical conservation action.

On its pages, readers will find a blend of theoretical concepts, real-world case
studies, and pragmatic guidance. The intention behind this comprehensive structure
is to provide an overview of each level of ecological connectivity, equipping readers
with the necessary information for effective management implementations and
offering general guidance for navigating the intricate realms of forest ecosystem
connectivity.

Part I, “Understanding Ecological Connectivity,” explores different concepts,
measures, and models for assessing connectivity at different levels of biodiversity.
We discuss species migration, range shifts, and dispersal as well as emphasize the
significance of connectivity for saproxylic species. Furthermore, we examine the
state of forest genetic diversity and conservation efforts, highlighting genetic con-
nectivity and local adaptation in the face of climate change. Lastly, we address the
role of soil in maintaining forest ecosystem connectivity, providing a comprehen-
sive foundation for understanding this crucial aspect of ecological dynamics.

Part II, “Monitoring and Assessment Techniques,” focuses on methods for moni-
toring and evaluating connectivity in forest ecosystems. It includes discussions on
monitoring habitat fragmentation and biodiversity, as well as on assessing habitat
quality and quantity using specific features and metrics. This section also explores
both in situ and ex situ conservation measures and offers practical guidance for
conducting rapid biodiversity assessment, providing valuable tools for effective
monitoring and conservation efforts.

Part III, “Restoration, Social Dynamics, and Policy Frameworks,” examines the
restoration of forest landscape connectivity, addressing the reasons, locations, and
methods involved. It discusses assisted migration as a strategy for adapting to cli-
mate change and the management of forest genetic resources under changing cli-
mate conditions. It also covers forest health management in connected landscapes
and the control of invasive alien species in forest corridors. Furthermore, it explores
ecological connectivity in urban and semi-urban forests along with its social-
ecological implications and contributions to people. This section also presents con-
servation initiatives aimed at connecting landscapes with involvement of indigenous
and local communities. Lastly, it discusses ecological connectivity perspectives for
policy and practice, providing insights into effective conservation strategies.
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Part IV, “Case Studies in Ecological Connectivity,” presents 16 case studies from
17 countries across four continents, offering insights into ecological connectivity in
forest ecosystems. The chapters discuss initiatives like Austria’s national stepping
stone network and forest reserves in Argentina. Challenges in Botswana’s Kazuma
Forest Reserve are addressed, as are projects in Brazil, Chile, and China. The stud-
ies also cover landscape connectivity in Ethiopia, best practices in transnational
initiatives in Austria and Hungary as well as along the Sava River in Serbia and
Croatia, and research hubs in central India. In addition, there are studies from
Mongolia, Paraguay, and Tanzania as well as insights from the Republic of Korea,
Tunisia, and Scotland.

Finally, Ecological Connectivity of Forest Ecosystems is more than just a book;
it is a comprehensive exploration and a call to action. On its pages, readers will
embark on a journey through the intricate pathways of ecological connectivity,
hopefully allowing them to recognize and appreciate the pivotal role of ecological
connectivity in shaping the future of our forests as they face the severe challenges
of a changing climate. Uniting the knowledge of global experts, this volume invites
all who engage with its contents to become stewards of ecological connectivity,
ensuring the resilience of forest ecosystems and safeguarding their biodiversity for
future generations to come.

I Case-Shudy Counisies
I Coriributiog Conniries
o Afiatiers of Contbuticeg AATioes

Fig.3 Map of included case studies (pink) as well as countries (dark gray) and institutional affili-
ations (dots) of contributing authors
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Abstract

The concept of landscape connectivity involves species movement between habi-
tat patches influenced by landscape features. It encompasses structural and func-
tional connectivity as well as species-specific considerations. Structural
connectivity analyzes spatial patterns of landscapes, while functional connectiv-
ity considers the response of organisms to the landscape. Evaluating habitats for
connectivity requires accounting for their spatial and temporal variations.
Temporal connectivity—often overlooked—is particularly essential for long-
term population viability. Conservation planning should therefore integrate mon-
itoring and assessment measures to achieve connectivity objectives in dynamic
landscapes affected by land use and climate change. Measuring landscape con-
nectivity considers landscape composition, structure, and heterogeneity as well
as the presence of barriers, each varying among species and scales. Assessing
connectivity across scales requires considering biological levels of organization
from genetic flow to community processes. Modeling connectivity is complex
and incorporates patch- and landscape-based approaches. Patch-based models
focus on attributes of habitat patches, while landscape-based models consider
movement behavior and resistance surfaces. Landscape connectivity research
has expanded rapidly in recent decades, and its conceptual foundations are evolv-
ing. Recent advances integrate metapopulation dynamics with habitat configura-
tion and movement behavior. Traditional static models are being replaced with
dynamic models considering temporal variations in landscape attributes. Further
technological advancements such as remote sensing and climate simulators
allow more accurate representations of dynamic landscapes, promoting ecosys-
tem understanding and supporting conservation planning.

Keywords

Corridors - Fragmentation - Habitat - Landscape matrix - Metapopulation - Patch
concept - Resistance surface - Stepping stones

The Concept of Connectivity

The concept of landscape connectivity dates back to the 1970s and 1980s and was
developed based on three key components (Fahrig et al. 2021). First, populations of
many species are distributed across patches of habitat that are not connected (Den
Boer 1968). Second, the persistence of populations depends on the movement of
individuals, which enables gene exchange between different patches of habitat
(Levins 1969). Third, the landscape features between these patches can either facili-
tate or hinder movement, which is crucial to the concept of connectivity (Merriam
1984). Accordingly, Merriam (1984) defined connectivity as the interaction between
movement attributes and landscape structure that influences movement between
patches, and thus population persistence. He described landscape connectivity as
the degree to which absolute isolation is prevented by landscape elements, allowing
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organisms to move between different habitat patches. Later, Taylor et al. (1993)
defined landscape connectivity as “the degree to which a landscape facilitates or
impedes movement among resource patches,” encompassing the spatial distribution
of patches as well as the movement success of species in response to it. In much of
the literature on landscape connectivity, movement success is assumed to be closely
linked to the spatial distribution of habitats across landscapes, and movement is
assumed to be strongly constrained by habitat (Fahrig et al. 2021). This has led to a
focus on linear structures (habitat corridors), small patches of temporary habitat
(stepping stones), and the distances between habitats (Forman 1995). Corridors are
expected to be advantageous for species that specialize in certain habitats, rely on
undisturbed habitats, and have limited mobility. On the other hand, stepping stones
may not offer the same physical habitat continuity as corridors, but they can still be
beneficial for more mobile species and those more resilient to habitat disturbance,
as well as for species with wider ranges compared to those that benefit from corri-
dors (With 2019). In conservation planning, small areas are often overlooked due to
the assumption that their ecological value is limited. However, a global synthesis by
Wintle et al. (2019) found that neglecting these smaller areas would lead to the irre-
vocable loss of numerous species that inhabit them exclusively.

Following Tischendorf and Fahrig (2000), the concept of landscape connectivity
includes two basic aspects: structural and functional connectivity. Structural con-
nectivity is based entirely on the spatial relationships of structural elements of a
landscape, with no direct link to the behavioral characteristics of organisms (Saura
et al. 2011; Taylor et al. 2006; Tischendorf and Fahrig 2000). Functional connectiv-
ity, on the other hand, explicitly relates these spatial arrangements of structural
landscape elements to the ability of organisms to move or disperse through the
landscape (Adriaensen et al. 2003; Crooks and Sanjayan 2006; Rudnick et al. 2012).
In fact, connectivity is species-specific, and a suitable dispersal habitat or corridor
for one species may not be favorable for others (Wang et al. 2018). Since each spe-
cies has unique requirements and dispersal behaviors, the likelihood of different
species reaching the same patch varies. Therefore, Salgueiro et al. (2021) recom-
mended a multispecies approach to address communities and draw inferences for as
many species as possible. Assessing the effectiveness of connectivity initiatives is
also challenging since newly created habitat corridors or stepping stones connecting
existing habitat fragments need time to develop before providing functional con-
nectivity (Brouwers et al. 2010). However, evaluation periods are often insufficient
and lack habitat information concerning the species of interest (e.g., specialized
forest-dwelling species). Information about habitats encompasses several aspects
such as habitat quality, use, and change in order to determine suitable habitats
(Morris 2003; Morris et al. 2009) (see Chap. 10). Habitat suitability refers to the
ability of a habitat to sustain a viable population over an ecological time scale and
is considered part of functional connectivity (Hall et al. 1997; Kellner et al. 1992;
Wang et al. 2008). Conventional approaches that assess habitats by linking changes
in habitat to changes in species density, richness, and diversity may not be sufficient
to ensure species persistence. Therefore, the evaluation of habitats should also
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consider the heterogeneity of the entire landscape and its spatiotemporal variability
(Baudry et al. 2003).

Habitats vary both spatially and temporally, which poses a major challenge for
conservation planning when it comes to measuring or modeling connectivity at rel-
evant scales, leading in turn to difficulties in selecting appropriate protected areas or
measures. Habitat connectivity can manifest over timescales ranging from hours to
centuries, and understanding different species’ dispersal and movement characteris-
tics is crucial for integrating connectivity into spatial planning (Beger et al. 2022).
To achieve conservation and connectivity objectives, it is essential to accompany
them with corresponding monitoring and assessment measures (Pressey et al. 2021).
In this context, the following sections will present a brief overview of the most com-
monly used measures and models for assessing connectivity, along with information
about conservation planning in a dynamic landscape affected by changes in land use
and climate.

Measuring Connectivity

The consensus in the literature is that connectivity is a species- and landscape-
specific concept (e.g. Schumaker 1996; Tischendorf and Fahrig 2000; Wiens 1997).
The duality of this definition—that is, the dynamic interaction between the charac-
teristics of an organism and the landscape—adds complexity to measuring connec-
tivity. On one side, numerous characteristics of the landscape such as composition,
structure, heterogeneity, quality, possible barriers, and scale exert their influence
(Fig. 1.1). On the other side, different species exhibit unique biological traits, dis-
persal abilities, or survival rates in non-habitat areas (Tischendorf and Fahrig 2000),
and there are behavioral differences between life stages and even among individuals
of the same species (Bélisle 2005). Due to these complexities, it is impossible to
permanently classify areas as connected or disconnected; rather, classification
depends on the specific species or process being considered, the landscape, and the
scale at which connectivity is assessed (With 2019). In other words, the degree of
connectivity for a given species can vary significantly across different landscapes
(Kindlmann and Burel 2008), while conversely, the same landscape may exhibit
different levels of connectivity for different organisms (Tischendorf and Fahrig
2000). To simplify the measurement of connectivity, two main approaches are com-
monly considered: structural and functional.

Structural connectivity, also known as physical connectivity, is determined by
analyzing the spatial pattern of the landscape, including factors like the size, shape,
and location of habitat patches. It refers to the adjacency of patches (spatial conta-
gion) or the presence of physical linkages like corridors (With 2019). However, it
does not encompass actual or functional habitat connectivity for species living in
the landscape (Fagan and Calabrese 2006). While structural connectivity may not
provide a comprehensive measure of connectivity, it offers a relatively straightfor-
ward and practical method for assessing connectivity, particularly as an initial eval-
uation or in cases where other approaches are not feasible. As a result, structural
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Fig. 1.1 Aerial view of a rural intersection where a road crosses over a railway track amidst lush
green fields in South Korea. The road curves around the railway, with clear markings and a small
green structure nearby (Photo: Jacky Woo/Adobe Stock)

connectivity assessments are frequently used in restoration projects or to provide an
approximation of the potential functional connectivity when species data is not
available (Hilty et al. 2020).

Functional connectivity is a dimension that considers the response of organisms
to landscape properties and can be split into two categories, namely potential con-
nectivity and actual connectivity, depending on the level of detail of the data required
and obtained from each measure (Calabrese and Fagan 2004). Potential connectiv-
ity combines metrics incorporating limited or indirect knowledge about an organ-
ism’s dispersal ability and the spatial relationships among the landscape’s physical
attributes. For instance, indirect measures may involve estimating mobility based on
body size or energy budgets, while limited data could include measurements with
little spatial detail such as mean or maximum recapture distances from tagging or
banding studies. Actual connectivity provides a more concrete estimate of the real
linkages among landscape elements or habitat patches through direct observation.
For example, actual connectivity metrics may involve observing how organisms
respond to habitat edges or quantifying the movement of individuals through corri-
dors, either into or out of focal patches or across a landscape (Fagan and Calabrese
2006). Understanding all three categories of connectivity—structural, potential, and
actual—is crucial when determining the amount and type of information that a cho-
sen measuring method will provide about spatial dynamics in ecological systems.

For a connectivity assessment, several decisions regarding the chosen approaches
must be made. These include determining whether connectivity serves as a
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dependent or independent variable, opting for a structural or functional approach,
and understanding how these choices interrelate with other factors. The consider-
ations should also include deciding whether to conduct a single- or multispecies
assessment, taking into account single or multiple habitat types, employing either a
patch- or landscape-based approach, and considering spatial and temporal scales as
well as biological levels of organization of the subjects under study. For a summary
of the characteristics of patch and landscape approaches and their links to other
aspects in a connectivity assessment, see Fig. 1.2.

Following Goodwin (2003), structural measurements treat connectivity as an
independent variable. This approach involves directly measuring the physical char-
acteristics of patches and empirically assessing their impact on biological variables
such as species presence, abundance, and richness as responses. Another approach
treats connectivity as a dependent variable that is modeled rather than obtained
empirically from the data gathered about the landscape and the species (Goodwin
2003). This approach is often combined with the use of functional methods, which
incorporate species movement parameters.

A connectivity assessment can employ either a single-species or a multispecies
strategy. The single-species approach is chosen based on the understanding that a
connectivity measure for one species might not be suitable for others (Wang et al.
2018). Typically, single-species methods rely on functional approaches and require
precise data on the selected species’ movement responses to landscape elements. If
the selected species acts as an umbrella species, such connectivity assessments can
potentially lead to the protection of several different species (Breckheimer et al.
2014). On the other hand, the multispecies approach has commonly been adopted
when defining connectivity as the presence of corridors or other structural connect-
ing elements. When using structural methods, no assumption is made about a par-
ticular species, and only structural data is considered the measure of connectivity
(Kindlmann and Burel 2008). As a result, these findings can be interpreted as valid
for multiple species. In addition, functional methods for measuring connectivity for
multiple species exist, such as potential connectivity methods that use standardized
values like the average dispersal distances (Santini et al. 2016). These approaches
assess several species with similar characteristics simultaneously. However, care
needs to be taken when generalizing connectivity results using standardized values
or extrapolating multispecies connectivity from single-species studies. This practice
may introduce bias by assuming that all species perceive landscape and barriers
similarly, as highlighted by Salgueiro et al. (2021) after testing single- and multi-
species models. In conclusion, while multispecies assessments using structural or
potential approaches may be less precise compared to single-species assessments
conducted with actual connectivity methods, they offer more practical advantages
for large-scale studies and for identifying areas with potential conservation value
for multiple species. Another way to approach a connectivity assessment is by con-
sidering the patch or landscape scales. Patch-based approaches are often measured
using structural methods, while landscape-based approaches are more commonly
associated with functional methods. One of the key assumptions of the structural
approach is that species movement is restricted to the preferred habitat (Tischendorf
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Fig. 1.2 A comparison table outlines the characteristics of patch- and landscape-based approaches

in ecological studies, correlated to the different perspectives possible within connectivity
assessments

and Fahrig 2000). Accordingly, the landscape is understood as islands of habitat
(patches) connected via dispersal within a matrix of non-habitat. The patch approach
is built on the island biogeography and metapopulation theories (Moilanen and
Nieminen 2002). It acknowledges the critical importance of taxon movement among
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patches for recolonizing habitats after local extinctions as well as for the coloniza-
tion of new habitats. The underlying assumption is that small patches may be more
susceptible to demographic, genetic, or environmental stochastic events leading to
local extinctions. In this context, the role of dispersal becomes key for ecological
equilibrium. Structural patch measures focus on determining connectivity based on
dispersion, either through continuity or through dispersal distance. By contrast, the
landscape approach based on landscape ecology (Howell et al. 2018) views the
landscape as a heterogeneous mix of physical attributes, attempting to relate the
effects of this heterogeneity to ecological processes and interactions such as con-
nectivity for species. Since its fundamental idea is that given the heterogeneity of
the landscape, its different parts will have different effects on species and energy
flows that can be better determined using functional approaches rather than with
structural methods. Despite their limitations, landscape-based measures offer an
advantage over patch-based measures by enabling the assessment of different move-
ment responses in heterogeneous landscapes. Another significant benefit of
landscape-based methods is their capability to cover larger spatial scales. First, cer-
tain processes or species operate at the landscape level, thus rendering patch-based
analysis incomplete (With 2019). Second, connectivity measurements of a patch
cluster cannot always be easily extrapolated to the entire landscape, particularly
when landscapes exhibit a hierarchical patch structure—patches embedded in other
patches at different scales (Wu and David 2002). The spatial scales of connectivity
studies span a wide range, from attempts to develop global connectivity coefficients
(Larrey-Lassalle et al. 2018) to examining the smallest distances between veteran
trees or deadwood logs for certain insect species (e.g., Ranius et al. 2011; Ruiz-
Carbayo et al. 2017). Typically, connectivity assessments focus on a single type of
habitat; however, with regard to species utilizing different habitats during their life
cycle, multi-habitat connectivity can often provide a better understanding of species
presence, abundance, and richness than single-habitat connectivity (Clauzel et al.
2024). Assessing connectivity in heterogeneous landscapes comprising different
types of habitats has been challenging in the past, but the development of spatial
models that interpret the landscape as a resistance surface has enabled researchers
to better analyze connectivity in such landscapes.

In addition to spatial characteristics, the temporal continuity of a habitat plays a
crucial role in determining the biodiversity it can support. As highlighted by
Kindlmann and Burel (2008), a threshold for metapopulation extinction exists not
only with regard to the amount of suitable habitat but also with regard to patch turn-
over. Despite its significance, temporal connectivity is often overlooked in connec-
tivity assessments, as noted by Fahrig (1992). Most studies that explicitly assess
temporal connectivity quantify the temporal changes in spatial connectivity across
two or more varying time periods (Uroy et al. 2021). This approach may involve
examining different seasons or years, such as when landscapes undergo rapid trans-
formation due to intensification or before and after the removal of a specific ele-
ment. More recently developed methods have begun to quantify spatiotemporal
connectivity, thus accounting for both spatial and temporal dispersal, considering
current and future climate scenarios (Huang et al. 2020).
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When assessing connectivity, it is crucial to take into account the biological lev-
els of the organization, including genetic flow, propagule dispersal (such as spores,
pollen, or seeds), individual movements (ontogenetic movements and ecological
interactions), populations, species, and communities. These aspects are intricately
linked to abiotic cycles such as nutrient and water cycles (Beger et al. 2022).
Considering these different levels is important because the temporal scales of
responses are hierarchically nested. For instance, a temporal response may be
shorter at an individual level than at a community level (Hylander and Ehrlén 2013).
Adaptation of species to changes in their environment can occur rapidly, sometimes
even within a single generation; it is a population—as well as an individual-level
process (plasticity and dispersal). On the other hand, population growth and evolu-
tion involve longer time frames and consider populations as a whole (O’Connor
et al. 2012). Acknowledging these hierarchical levels and temporal scales helps
achieve a comprehensive understanding of how species and ecosystems respond to
changes in connectivity.

Modeling Connectivity

Connectivity modeling aims to describe the spatiotemporal dynamics of diverse
ecological processes and is implemented in fundamentally different fields of
research. Most disciplines have developed specific modeling frameworks, resulting
in a large number of varying approaches. This subchapter focuses on models
addressing the movement of animals through landscapes and its implications for
population dynamics, highlighting several well-known concepts that reflect the pro-
gression of connectivity modeling.

The analysis of animal movement encompasses simple measures as well as com-
plex modeling techniques that often focus on specific characteristics of connectiv-
ity. Yet almost all of these models correspond to one of two basic concepts of
connectivity originating from distinct ecological disciplines: (1) Population ecology
typically focuses on features of distinct habitat patches and their effect on popula-
tion dynamics through colonization and extinction and (2) landscape ecology gener-
ally aims to quantify the effects of landscape attributes on animal movement or
connectivity per se (Howell et al. 2018). All ecological models simplify the real
world by definition: The patch-based approach oversimplifies the effect of the land-
scape matrix between subpopulations, while the landscape approach neglects the
links to population-level aspects beyond individual movement (Howell et al. 2018).
The differences between the two concepts are reflected in their models, which differ
in their data requirements as well as in terms of the research questions that can be
addressed.

In the late 1960s, Levins (1969) introduced the theory of metapopulation dynam-
ics and laid the foundation for a patch-based view of connectivity. The patch con-
cept focuses on discrete habitat areas and how their spatial configuration as well as
certain patch attributes affect colonization and extinction dynamics. Patch-based
models typically ignore local population dynamics and reduce this information by
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using the occupancy data of patches. The theory behind this concept shares some
similarities with the island biogeography theory described by MacArthur and
Wilson (1969) (Hanski 2014; Moilanen and Nieminen 2002). Related models often
assume that extinction is affected by the size of a habitat patch and that connectivity
between patches determines the colonization probability (Moilanen and Nieminen
2002). Following Moilanen and Nieminen (2002), connectivity is described by
combining properties of the focal patch (such as its size, shape, and habitat quality),
the population of the source patch, and the intervening habitat matrix. However,
very simple connectivity measures such as the nearest neighbor approach only
include the distances to the nearest neighboring patches. Obviously, such measures
ignore potential source patches within a reasonable migration range beyond an arbi-
trary number of neighboring patches closest to the focal patch. Buffer measures
address this issue by including all occupied patches within a certain radius (Moilanen
and Nieminen 2002), but since such buffers are specified via fixed radii instead of a
probabilistic formulation using dispersal kernels, they cannot adequately incorpo-
rate rare long-distance dispersal events.

A subsequent approach known as incidence function models (IFMs) (Hanski
1994a, b) addresses this shortcoming by including various parameters such as patch
area, interpatch distance, species dispersal ability, and other environmental vari-
ables as well as life history traits of the respective species to estimate extinction and
colonization (Hanski 1994a; Prugh 2009). This model assumes constant coloniza-
tion and extinction rates and estimates the probabilities with which occupied patches
become extinct and unoccupied patches become colonized between discrete time
steps (Hanski 1994a). The occupancy state of a single patch is described by a linear
first-order Markov chain with two states (Hanski 1994a), and the long-term proba-
bility of a patch being occupied is called incidence. The IFM framework allows
flexible implementation of covariates including landscape structure (Moilanen and
Hanski 2001) and represents the most common spatially realistic metapopulation
model (Risk et al. 2011). Moilanen (2002) identified three types of errors that typi-
cally occur in metapopulation datasets: (1) a biased estimation of the patch area, (2)
incomplete identification of patches, and (3) misclassification of occupied patches
as being unoccupied (i.e., imperfect detection resulting in false absences). Risk
et al. (2011) extended the IFM to address these types of errors via a hierarchical
formulation in a Bayesian framework. Sutherland et al. (2014) used an occupancy
modeling framework to implement a spatially realistic metapopulation model of
dispersal and connectivity while accounting for imperfect detection and addition-
ally including demographic parameters to account for age class—specific contribu-
tions to both extinction and colonization processes. In summary, patch-based
modeling approaches can be seen as a framework that incorporates movements of
individuals between (but not within) local subpopulations and therefore connectiv-
ity as it affects the persistence and stability of metapopulations.

The assumed effect of the intervening landscape matrix on the movement behav-
ior of organisms is fundamental to landscape ecology models and critical for our
understanding of connectivity (Kindlmann and Burel 2008; Tischendorf and Fahrig
2000). A common representation of heterogeneous landscapes associated with an
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estimated cost of movement is termed the resistance surface. Resistance surfaces
are raster maps in which each pixel features a specific value representing either a
survival risk or the willingness of (respectively the physiological effort for) an indi-
vidual to move through that pixel (Zeller et al. 2012). The creation of such maps is
a two-step process including (1) the preparation of appropriate data considering
species-specific environmental covariates as well as the temporal resolution and (2)
the actual construction and optimization of the resistance surface, which may be
based on expert opinion, literature review, or empirical data on the focal species
(Dutta et al. 2022). It is important to consider that the spatial resolution as well as
the level of detail of the underlying layers can seriously affect the results of such
studies (Cushman and Landguth 2010), making critical reflection and justification
of each step of the process highly recommendable (Zeller et al. 2012).

One of the first and most widely applied methods using resistance surfaces for
functional connectivity analyses is least-cost modeling (Adriaensen et al. 2003;
Correa Ayram et al. 2016). Least-cost models were developed in transport geogra-
phy to determine optimal routes between pairs of locations (Etherington 2016). The
underlying idea originates in graph theory, and the approach has been adapted many
times to improve the framework for the analysis of animal movement (Diniz et al.
2020). In simple terms, the resulting least-cost path is a path between two pre-
defined locations with minimal accumulated costs according to the resistance sur-
face. Several variations exist, including a factorial implementation to compute the
least-cost path for every possible pair of points simultaneously (e.g., Cushman et al.
2013) or the inclusion of suboptimal routes to account for imperfect knowledge of
individual animals regarding landscape resistance (Pinto and Keitt 2009). Least-
cost analysis has also been used to create undirected connectivity maps of entire
landscapes. Such resistance kernels are constructed by calculating the least-cost
path with a species-specific dispersal threshold from each source cell to every adja-
cent cell before summing up all values to estimate potential movement rates (Diniz
et al. 2020). A further common approach utilizing resistance surfaces is circuit the-
ory, which is based on electrical circuit theory (McRae et al. 2008). In circuit the-
ory—based models, each raster cell that does not act as a complete barrier will be
assigned an electrical node, and all adjacent cells are connected via resistors that
represent dispersal. High current values of cells represent a high probability of indi-
viduals passing through when moving randomly from source to destination patches.
Visualization of the results allows straightforward identification of pinch points in
the landscape (McRae et al. 2008; Pelletier et al. 2014).

Another relevant modeling approach known as individual-based dispersal mod-
els (IBDMs) employs simulation and allows the incorporation of animal behavior
affecting movement decisions (Diniz et al. 2020). In such models, simulated indi-
viduals are released on predefined cells and move with each time step of the simula-
tion (Allen et al. 2016; Diniz et al. 2020). The behavioral component can be specified
for any combination of landscape characteristics and state variables of the individ-
ual (Diniz et al. 2020). This process can be implemented via if-else statements or
probability functions (Allen et al. 2016) and should be based on field data or reliable
expert knowledge (Hauenstein et al. 2019). Further analysis is then based on the
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overlapping of a large number of simulated individuals and movement paths (Allen
et al. 2016). Fletcher et al. (2019) developed a framework that includes the concept
of resistance surfaces along with an additional mortality risk map to analyze the
complementary effects of movement behavior and mortality risk. Based on spatial
absorbing Markov chains and random walk theory, this framework allows move-
ment steps to be specified via transient states and mortality via absorbing states of a
Markov chain; it therefore does not require individual-based simulations (Marx
et al. 2020). In summary, landscape-based connectivity models substantially con-
tribute to our understanding of the linkages between animal movement behavior and
landscape configuration and add valuable input for conservation strategies and
research.

Recent advances in the field of connectivity modeling unify concepts of meta-
population dynamics with habitat configuration (structural connectivity component)
and movement behavior (functional connectivity component; Drake et al. 2022).
Building on a strong theoretical background, advanced modeling techniques such as
spatially explicit hierarchical models allow metapopulation dynamics in heteroge-
neous landscapes to be addressed (e.g., Howell et al. 2018; Royle et al. 2018) and
tackle long-standing challenges in the field of connectivity modeling (Drake
et al. 2022).

Application in a Dynamic Landscape

The conceptual foundations of landscape connectivity models have undergone sig-
nificant evolution in recent decades, as highlighted by Bishop-Taylor et al. (2018).
Traditionally, these models lacked dynamic quantification of variations at seasonal,
yearly, and decadal scales, often treating landscapes as static units when modeling
species movement. However, there has been a shift toward incorporating the
dynamic behavior of landscapes in recent years, resulting in more accurate repre-
sentations. Three major characteristics of habitats in a landscape, namely (i) size,
(ii) arrangement, and (iii) quality are often not static throughout an assessment time
frame. Landscape structure and quality can change over time (Kindlmann and Burel
2008). These temporal variations may be intra- or interannual; for example, a land-
scape may alternate between dry and wet periods within a year, resulting in distinct
patch qualities with varying spatial arrangements. In addition, natural events and
human activities such as tree felling, wildfires, ecological disturbances (e.g., inva-
sion), climate change, and other context-dependent effects contribute to the dyna-
mism of landscapes. As a consequence, a landscape may undergo contrasting
variations leading to spatiotemporal heterogeneity and changing landscape connec-
tivity (Puckridge et al. 1998). Cushman et al. (2005) demonstrated that the temporal
dynamics of landscapes significantly influence animal movement pathways. Despite
the inherent dynamism of landscapes, many studies have evaluated landscapes
based on a limited timeframe or a single point in time (Kaszta et al. 2021; Lorimer
2015; Unnithan Kumar et al. 2022).
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The availability of fine-scale GIS data has paved the way to incorporating spatial
heterogeneity with detailed parameterization when studying landscape connectivity
(Cushman and Huettmann 2010; Kumar et al. 2019). With the increased availability
of time series of remote sensing data, a new generation of landscape models can
now also consider temporal dynamics, thereby further enhancing our understanding
of species movement patterns. Increasing computational capabilities and empirical
evidence supporting the influence of dynamic landscapes on species movement
have inspired modelers to consider the dynamic parameters of landscapes in land-
scape connectivity models (Zeller et al. 2020). Basic parameterization in a dynamic
model usually considers variables such as the patch quantity, quality, and arrange-
ment as well as the dispersal success of the population at specific spatial and tempo-
ral scales aligned with the ecological processes of interest.

A growing number of imaging satellite programs are providing large amounts of
data at different spatial resolutions for the entire planet. Remote sensing data can be
processed to obtain land use, land cover, and habitat suitability maps at fine spatial
and temporal scales, providing opportunities to detect landscape dynamics (see
Chap. 9). In addition, land change models can utilize historical trends to predict
future land use patterns (Baig et al. 2022; Weng 2002). Recent climatic data and its
future projections using climate simulators have further increased data availability,
enabling a more comprehensive definition of habitat dynamics. The increasing use
of radio telemetry to track animal movements has also contributed to the wealth of
data available for the systematic evaluation of landscape dynamics. However, data
intensification raises the important question of how far the dynamics of a landscape
should be taken into account in landscape connectivity models when aiming for the
implementation of conservation plans (Zeller et al. 2020).

The dynamics of landscape connectivity are closely related to the processes
influenced by changing spatial and temporal scales (Gurarie and Ovaskainen 2011).
Consequently, the initial step in landscape connectivity planning is to decide on the
spatial and temporal scales that align with the ecological questions under investiga-
tion. The second stage of planning entails identifying other variables that contribute
to the dynamic structural and functional connectedness of the landscape. In a real
scenario, predicting future conditions and disturbance dynamics is challenging,
making conservation planning a complex task that often requires some level of
approximation and flexibility in implementation (Zeller et al. 2020). To address
such uncertainties, planners may wish to evaluate worst-case scenarios or establish
disturbance thresholds for different conservation options (Van Teeffelen et al. 2012).

The modeling approach for landscape connectivity dynamics can be classified
into distinct temporal scales (short, moderate, and long) as well as future projec-
tions. At smaller scales, the influence of species’ responses is modeled for changes
in daily temperature, precipitation, cloud cover, humidity, and other species-specific
variables that may have an influence over shorter time periods. For example, Jarvis
et al. (2019) studied amphibian connectivity between two sites connected via a road
underpass in Yorkshire, England. In moderate-scale studies, the incorporation of
seasonality is the most common approach: Seasonal changes in land cover may lead
to variations in species movement patterns. Chibeya et al. (2021) identified
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elevation, land cover, and vegetation index as the most prominent predictors of ele-
phant movement during the wet season in Sioma Ngwezi National Park, Zambia.
By acknowledging landscape as a dynamic unit, researchers have begun to question
whether static approaches identify the same important areas for connectivity as
multi-seasonal and multiyear analyses. Changes occurring at longer time scales,
such as climate change or land use change, alter the functional connectivity of a
landscape. Enhancing connectivity at these scales provides climate change adapta-
tion opportunities (Krosby et al. 2010). Species-specific dynamic landscape con-
nectivity evaluations under projected scenarios of climate change are usually
performed by employing niche modeling and species distribution modeling (see
Chap. 6).

Understanding a landscape’s dynamic nature may be simple, but effectively sim-
ulating the dynamic data in a modeling environment is challenging. In recent
decades, significant progress has been made, thanks to technological advancements,
allowing for the incorporation of dynamic entities in landscape connectivity models
and thus making them more realistic for conservation planning. However, caution is
advised when representing dynamics in a landscape connectivity model, as any
inappropriate representation of dynamics can deliver misleading connectivity
results. It is therefore essential to develop models capable of analyzing dynamic
connectivity with minimal bias in order to improve conservation planning efforts
with as little misdirected conservation investment as possible. Such models are
invaluable tools for understanding ecosystem dynamics and informing management
strategies for reserve planning, policymaking, and species conservation planning.
The diverse perspectives in this field of research have led to the development of a
plethora of techniques, emphasizing the need to explicitly define study objectives to
select the optimal modeling approach and gather the required data (Diniz et al.
2020). Interdisciplinary collaboration is crucial to making informed decisions, pri-
oritizing conservation actions, and allocating resources effectively. Integrating
domain-specific ecological knowledge with advanced modeling techniques, as well
as harnessing the potential of big data and remote sensing, allows us to gain pro-
found insights into landscape dynamics. This collaborative approach enables us to
develop more robust connectivity models, improving ecosystem understanding and
aiding conservation planning.
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The Wood Warbler (Phylloscopus sibilatrix) is a forest-dependent and migratory bird species that
inhabits open deciduous and mixed forests, as well as beech forests; its wintering grounds are
located in tropical Africa. (Photo: Samuel Schnierer).
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Abstract

Migration is a fundamental biological phenomenon with significant impacts on
the survival of populations and ecosystems. Its precise definition depends on the
ecological discipline in focus, but it essentially entails the movement of an indi-
vidual or population between habitats to ensure survival and enhance the likeli-
hood of successful reproduction. Evolution has led to different types and
mechanisms of migration ranging from passive to active movements, and from a
few meter to migrations across biomes. Climate change has a strong effect on
migration behaviour, leading to shifts in the ranges of populations and species as
the quality and availability of habitats are altered. This chapter provides an over-
view of migratory behaviour and points out examples of variations caused by
climate change. In addition, it discusses the context of migratory and ecological
connectivity, both of which are essential for preserving biodiversity and facilitat-
ing adaptation. Understanding migration, range shifts, and dispersal is key to
effective conservation and management efforts and should therefore be a primary
focus of international collaborations.

Keywords

Active migration - Passive migration - Migratory connectivity - Long-distance
migration - Migratory phenology shift - Vertical shift

Introduction

Migration is a natural phenomenon observed in almost any taxon worldwide; it
involves individual movements that contribute to shaping population dynamics and
influencing ecosystems (Dingle and Drake 2007). It is typically defined as locomo-
tion by walking, swimming, or flying that results in a directional movement which
is usually repeated periodically, often within a season. In plants and other non-
mobile organisms, migration is mediated by the dispersal of seeds and other propa-
gules. The reasons why species migrate vary, but at its core, migration is driven by
the need to move between habitats that differ in resources, environmental condi-
tions, competition, predation, or parasites (Joly et al. 2019) to ensure or increase the
probability of survival and reproduction. The spectrum of migration behaviour
across species is extensive as can be seen in bird species migration (see opening
figure in Chap. 2). Certain species exhibit obligatory migration, requiring them to
migrate each year regardless of local conditions. Examples of obligatory migration
can be found in many bird species, especially in birds with long migration distances,
where individuals usually spend the summer in the northern and the winter in the
southern hemisphere. By contrast, the migration of species with facultative migra-
tion behaviour is triggered by local environmental conditions. Such facultative
behaviour is typical for species with partial migration (Newton 2012), where parts
of a population migrate while others do not (Chapman et al. 2011)—as found, for
example, in blue tits (Nilsson et al. 2008). A special variation is multi-generation
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migration, where periodical migration occurs not within a single generation but
across successive generations, with each undertaking different stages of the migra-
tory route. A classic example of this is observed in the Monarch butterfly (Danaus
plexippus). Certain North American populations perform migrations over thousands
of kilometers to Central Mexico. Individuals usually do not survive the entire migra-
tion; instead, females lay eggs on the way back north and the next generation com-
pletes the journey (Reppert and de Roode 2018).

While most animals exhibit some kind of migration behaviour, alternative life
histories can also be found. Nomadic behaviour characterized by irregular move-
ments is observed in some species (Teitelbaum and Mueller 2019). Conversely,
some organisms adopt a strictly stationary lifestyle, such as sponges or corals inhab-
iting aquatic environments. Similar stationary life stages are of course also charac-
teristic for plants. When studying plant ecology, migration describes the movement
of a population rather than the movement of individuals and is typically linked to
the unidirectional spread of seeds and/or pollen (Ennos 1994). In both animal and
plant ecology, such movements are referred to as dispersal. Consequently, the defi-
nition of migration depends on the ecological discipline under consideration.

Migration pressures vary across regions, areas, and local conditions. Global
warming has emerged as one of the most urgent ecological challenges of our time,
with tremendous effects on biodiversity. While certain species may be able to adapt
to changing conditions under climate change, others may be forced to migrate to
areas with a more favourable environment. Regions characterized by significant
topographic and climatic heterogeneity have the potential to mitigate these pres-
sures on local species (Barber et al. 2016; Loarie et al. 2009), potentially leading to
only minor migrations within the same region. In other regions, climate change may
force species into significant range shifts. In species capable of long-distance migra-
tions like caribou, wolves, or some birds, these range shifts can traverse entire
biomes within a short time. Conversely, for the large share of species such as the fire
salamander (Salamandra salamandra) or the western capercaillie (Tetrao urogal-
lus)—both forest-dependent species found in European temperate forests—which
can only migrate over small distances, such range shifts can only occur gradually
over multiple generations and are linked to the process of dispersal.

Understanding the complexities of species migration and the differing responses
to climate change is essential for predicting future ecological scenarios, particularly
in regard to the connectivity of ecosystems. By examining these patterns, research-
ers can develop effective strategies to mitigate the impacts of climate change on
biodiversity and preserve heavily affected species.

Range and Migratory Phenology Shifts Under Climate Change

Climate change has a profound effect on species, influencing their coexistence
within local environments as well as on a wider ecological level. The quality and
availability of habitats are directly impacted by climate, thereby affecting species’
survival rates and future occurrences (Davis and Shaw 2001). As the climate
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changes, many species face challenges in surviving in their current habitats.
Consequently, they may undergo a shift in their geographical distribution—either
within their existing range or by migrating to entirely new regions. These migratory
patterns vary among species, with some traversing thousands of kilometers in search
of suitable conditions while others remain restricted to their original habitat.

The migration of tree populations following postglacial warming is frequently
cited as an illustrative example. Through the analysis of fossil pollen data, scientists
can enhance their understanding of the postglacial re-colonization process originat-
ing from isolated refugial populations (Brewer et al. 2017; Giesecke et al. 2019).
The last ice age started approximately 115,000 years ago and concluded with the
onset of the Holocene around 11,700 years ago. Paleoecological and genetic evi-
dence gathered in studies of postglacial re-colonization all across the Northern
Hemisphere indicates that numerous tree species expanded their range (again)
towards higher latitudes (Hao and Hao 2018; Kreft and Jetz 2007). Recent studies
increasingly recognize migration complexity, emphasizing that postglacial migra-
tion is shaped not only by climatic factors but also by geomorphology, the avail-
ability of northerly microrefugia, and various limitations regarding species dispersal
ranges: in North America, the southern distribution boundaries of many tree species
shifted northward due to postglacial warming, whereas the European Alps formed
an impassable barrier for species migration in many cases (Giesecke et al. 2019).
Research involving 1016 European plant species revealed that climate played a cru-
cial role for all of them, with over 50% being restricted in their ranges due to barri-
ers in postglacial re-colonization. In particular, dispersal-limited species, e.g. those
with glacial ranges in the south, seed-bearing plants as opposed to ferns, and species
with small ranges in Southern Europe were greatly handicapped in their range
expansion (Normand et al. 2011). One noteworthy conclusion drawn from a large-
scale analysis of a wide range of available data sources is that northerly microrefu-
gia were present during glaciation in some species and constituted a significant
factor to explain differing re-migration rates among species; such outlier popula-
tions could become important for predicting potential future range shifts (Feurdean
et al. 2013).

A commonly used unit to measure the velocity of range shifts (dispersal) is the
migration rate, which estimates the distance a species covers over time, respectively
the frequency of migration events, and the subsequent reduction in genetic differ-
ences between populations. Migration rates depend on species traits, competition,
habitat availability, and climatic conditions (Meier et al. 2012). The postglacial
migration rates for late-successional trees like the American beech (Fagus grandifo-
lia) and red maple (Acer rubrum; see also opening figure in Chap. 1) typically fall
within a range of approximately 100 meters per year (McLachlan et al. 2005), but
for early colonizing species higher rates have been reported, e.g. at least 1000
meters year~! in Ulmus spp. (Giesecke and Brewer 2018). In addition, a study utiliz-
ing the extensive collection of pollen diagrams available from the European Pollen
Database indicates that high apparent rates of postglacial expansion in species like
the alders (Alnus spp.) can be attributed to initial spread at low population density
followed by later expansion (Giesecke and Brewer 2018).
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However, the circumstances we are currently witnessing due to recent global
warming are significantly different from the postglacial era (IPCC 2020). Based on
the available evidence (see above), the migration rate of trees in North America to
areas with suitable climate conditions is expected to be considerably faster, poten-
tially reaching values exceeding 1000 meters per year (Malcolm et al. 2002).
However, also additional factors such as population size, life history traits, or adap-
tive potential play a key role in the prediction of range shifts under the ongoing
climate change scenario. Trees have been recognized as good adapters in the face of
climate change. It has been demonstrated that gene expression—the process of
translating the genetic code into the phenotype—is influenced not only by the
genetic code itself but also by environmental and climatic factors. Such adaptations
have been subsumed under the term “phenotypic plasticity” (Pigliucci et al. 2006;
see also Chaps. 4 and 5 and one of the most important underlying mechanisms is
epigenetic regulation (Garcia-Garcia et al. 2022). These regulatory mechanisms can
be inherited, thus allowing for relatively rapid adaptation from one generation to the
next. Nevertheless, critical views stress that the capacity of species to adapt to rap-
idly changing evolving environmental conditions has been overestimated and is
more limited than initially anticipated (Pearson 2006; Zhu et al. 2012).

When considering external obstacles that impede species’ migration and estab-
lishment in new regions, it appears urgent to develop conservation strategies that
improve connectivity, enhance the overall quality of habitats (including breeding
and feeding areas outside of existing protected areas), and encompass proactive
management measures designed to ensure the maintenance of species in the face of
climate change. Notably, the migration rates for the majority of species remain
unknown even though they constitute crucial pieces of information for making
accurate predictions regarding climate-induced range shifts and effectively manag-
ing and planning species conservation efforts (Estrada et al. 2016; Hovick
et al. 2016).

Range shifts induced by climate change can also be observed in numerous ani-
mal species as rising temperatures degrade the quality of existing habitats and/or
make previously unsuitable areas viable. An example is the hooded warbler
(Wilsonia citrina), a bird species inhabiting North American forests. Its distribution
range is generally heavily dependent on climatic conditions, and warmer tempera-
tures have allowed its range to expand towards the north over the last decades
(Melles et al. 2011). Also, other factors besides climate change can likewise lead to
range shifts in a species. For the great spotted woodpecker (Dendrocopos major)
and the black woodpecker (Dryocopus martius), changes in forest management
practices that allow forest maturation have resulted in range expansions in the region
of Catalonia (Spain). Besides the newly available habitat itself, its connectivity to
the existing habitats plays an important role in realizing range shifts (Gil-Tena et al.
2013). In general, landscape connectivity is crucial for enabling range shifts and its
improvement is therefore one of the most urgently recommended mitigation mea-
sures in the face of climate change (Littlefield et al. 2019).

However, not all species and populations exhibit range shifts to the north to
maintain preferred environmental conditions. For some, such as amphibians from
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the Iberian Peninsula, it is easier to shift to habitats at higher altitudes (Enriquez-
Urzelai et al. 2019). In general, cold temperatures and snow often restrict the occur-
rence of species at higher altitudes in mountainous or alpine ecosystems. Climate
change has a significant influence on these conditions, increasingly creating more
favourable environments for warm-adapted species in higher altitudes. The most
prominent example of a vertical shift in alpine areas is the shift of the tree line (the
upper boundary of the altitudinal belt where trees can grow). While global observa-
tions have noted shifts in tree lines within the last decades (e.g. in about half of 166
analysed sites around the world in a meta-analysis by Harsch et al. (2009), they
seem to be frequently driven by land use changes, human activities, and other dis-
turbances (Cudlin et al. 2017; Trant et al. 2020). Only a small (yet likely gradually
increasing) proportion of these shifts can be directly attributed to climate change
(Gehrig-Fasel et al. 2007). Nevertheless, the Global Observation Research Initiative
in Alpine Environments (GLORIA), a standardized monitoring programme for veg-
etation in alpine study sites around the world, has documented a decline of cold-
adapted species and an increase of warm-adapted species at high altitudes (Gottfried
et al. 2012). This dynamic reflects a vertical range shift for alpine plant species.
Expanding on this, an analysis of literature and observational data of 2133 taxa in
the European Alps by Vitasse et al. (2021) found altitudinal shifts not only in plants
but also in fungi and animals. These shifts were attributed to changing climate con-
ditions. Among all investigated species groups, terrestrial insects exhibited the most
pronounced shift, with an average upward shift of about 36 m per decade; however,
vertebrates like reptiles also increasingly populate higher altitudes.

Climate change can induce shifts in the phenology of periodically repeated
migration (e.g. Kolecek et al. 2020; Lenzi et al. 2023; Van Buskirk et al. 2009).
These changes are particularly observable in bird species, which exhibit the most
prominent migration behaviour. For instance, Kolecek et al. (2020) analysed the
spring arrival time of 52 migrating birds in the Czech Republic, revealing that
increasing temperature led to an earlier arrival. This shift was more pronounced in
species with shorter migration distances, as these species can respond faster to
increasing temperatures. The authors also found evidence that the shift in migration
phenology had a direct positive effect on breeding success and thus on population
trends. In line with this, failure to adapt to the timing of migration can lead to popu-
lation declines (Mgller et al. 2008). An earlier arrival of migrating birds was also
observed when analysing the migrations of 78 bird species in Pennsylvania (USA)
over 46 years (Van Buskirk et al. 2009). Lenzi et al. (2023) found that common
toads (Bufo bufo) from a population in the Swiss Alps began breeding around
30 days earlier than they did four decades ago. Migration shifts are often contingent
on the species and even on individual populations (Van Buskirk et al. 2009).
Furthermore, additional factors besides temperature (Dalpasso et al. 2023; While
and Uller 2014) also contribute to species migration; e.g., Seebacher and Post
(2015) showed that the migration phenology of birds often correlates with shifts in
the phenology of their prey’s abundance, adding another layer to the complexities
involved in these ecological processes.
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Dispersal Distances and Mechanisms

Whether a species succeeds in shifting to a new range or not primarily depends on
species-specific dispersal characteristics, as well as on the availability of suitable
habitats being connected through a network of corridors and stepping stones
(Hodgson et al. 2012). Dispersal is an ecological process that plays a pivotal role in
shaping the distribution and population sizes of species as well as influencing the
exchange of genetic variants among populations. In simple terms, dispersal can be
described as the movement or spread of reproductive units, such as seeds or off-
spring, between suitable habitat patches (Clobert et al. 2004). This movement is
crucial for species to establish and maintain populations in multiple locations. The
specific dispersal traits of a species are a key factor in determining its capacity to
migrate and adapt in response to the challenges posed by climate change (Clobert
2012; Johnson and Gaines 1990).

Dispersal mechanisms often determine the distance a species can move, and two
main types of dispersal exist: active dispersal, which is mostly observed in animals,
and passive dispersal, prevalent among plants and animals constrained in their self-
mobility. Active dispersal involves self-propulsion, including activities like walk-
ing, flying, swimming, or other forms of self-driven locomotion. By contrast,
passive dispersal relies on external factors such as wind (anemochory), water
(hydrochory), animals (zoochory), humans (anthropochory), or environmental
forces to transport organisms or their propagules to new locations. Direct observa-
tional data underscores the significant role of size in the dispersal strategies of dif-
ferent organisms. Actively dispersing organisms tend to be larger in size and can
engage in self-propulsion over longer distances, while passively dispersing propa-
gules are typically smaller and have limited overall dispersal capabilities (Jenkins
et al. 2007).

Traditionally, it was believed that plants rarely achieve targeted dispersal because
they lack specialized adaptations controlling the final destination of dispersed seeds.
However, several studies have found that animal vectors often direct resources to
disturbed areas or create favourable conditions for plants, implying that diffuse
mutualisms can frequently lead to directed dispersal (Clobert et al. 2004; Jenkins
et al. 2007; Mason et al. 2022). Besides the interaction of different dispersal mecha-
nisms, environmental conditions strongly influence dispersal distance. Habitat spe-
cialists encounter more barriers during dispersal compared to generalists (Hansson
1991). Exploring dispersal strategies and their interactions is immensely valuable,
especially when considering additional data on factors like dispersal distances and
lifetime dispersal capabilities (Table 2.1).

Taking a closer look at dispersal mechanisms with a species-specific evolution-
ary history reveals distinct patterns: Passive dispersal of plant seeds by anthropo-
chory—meaning dispersal through human activities such as agriculture, trade, or
recreational activities—has resulted in the global spread of alien plant species such
as the invasive ragweed (Ambrosia artemisiifolia) or the tree of heaven (Ailanthus
altissima). By contrast, myrmecochorous plants such as the common hepatica
(Hepatica nobilis) form symbiotic partnerships with ants. These plants produce
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Table 2.1 Examples of species that can be found in forest ecosystems with brief descriptions of
their migration behaviour and capabilities

Species

Description of migration behaviour and capabilities
Some snail species have only very limited dispersal
abilities. Edworthy et al. (2012) studied a population of
the Oregon forestsnail (Allogona townsendiana) and
documented movements of up to only 32.2 m over three
years.

The European stag beetle (Lucanus cervus) can fly to
reach new habitats or find a mating partner. Telemetry
data has documented flight distances of up to 1720 m
for males and about 760 m for females, while the
modelled dispersal abilities are 3 km and 1 km,
respectively (Rink and Sinsch 2007).

Female fire salamanders (Salamandra salamandra)
migrate to water bodies, preferably small creeks in
deciduous forests, to deposit their larvae. In some
cases, migrations from the summer habitat to
hibernation sites can also be observed in both sexes.
Migration distances of up to 1900 m have been
documented (Hendrix et al. 2017). Unfragmented
forests are essential for the migration of this species.

Wolves (Canis lupus) are known to migrate over
hundreds of kilometers. For example, Mancinelli and
Ciucci (2018) used GPS telemetry to document a
422.2 km migration within 41 days by a male
individual in Italy. By analysing the genetic profiles of
wolves, Andersen et al. (2015) revealed movements of
over 800 km in north-western Europe. This dispersal
ability allows wolves to recolonize areas from which
the species had previously been extirpated, like France
and Switzerland (Valiere et al. 2003).

Many bird species are capable of long-distance
migration. Populations of the black stork (Ciconia
nigra) that breed in Eastern Europe migrate to East
Africa via the Bosporus and the Sinai, while most
Central European populations migrate to West Africa
via Gibraltar. For populations from the migratory
divide, it is known that siblings from the same nest can
take different routes to Africa (Literak et al. 2017).
Migration can cover thousands of kilometers (Cano and
Telleria 2013).

(continued)
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Table 2.1 (continued)

Species Description of migration behaviour and capabilities
Species of the genus Acer (maple) have winged seeds
(samara) that are transported by the wind, a passive
dispersal mechanism called anemochory. Using wind
dispersal models, simulations for the red maple (Acer
rubrum) suggest median dispersal distances of seeds
between 2.8 m under calm and 83.3 m under stormy
wind conditions, with maximum distances of 11,371 m
(Higgins et al. 2003).

Like in most mistletoes, dispersal of the seeds of the
European mistletoe (Viscum album) occurs by ingestion
and defecation by birds, a passive dispersal mechanism
that is called endozoochory. Since the time a seed
spends in the digestive tract is usually quite short, the
estimated dispersal distances are up to 20 km. Dispersal
over longer distances is possible via epizoochory when
seeds stick to the feathers of birds (Zuber and Widmer
2009)

The seeds of some plants, like species of the genus
Arctium (burdock), adhere to animals, a passive
dispersal mechanism called epizoochory. For example,
Picard and Baltzinger (2012) investigated the fur and
hooves of 17 wild boars (Sus scrofa) in France and
found seeds of 35 plant species. Actual dispersal
distances via epizoochory are rarely reported but can
reach hundreds of kilometers. On Macquarie Island
(Australia), only plant species with epizoochorous
dispersal have been found, suggesting dispersal by
birds over at least 650 km (Taylor 1954).

seeds with elaiosomes, fleshy appendages that attract ants. The ants carry the seeds
to their nests, consume the elaiosome, and discard the intact seed, facilitating its
local dispersal within a confined habitat.

While trait databases for specific species groups such as mammalian herbivores
(Teitelbaum et al. 2015) or European reptiles (Grimm et al. 2014) have enhanced
our knowledge of species migration distances, the migration capacities of most spe-
cies remain unknown. In some cases, estimations obtained through traditional meth-
ods like capture-recapture or telemetry have underestimated the respective species’
actual capabilities. For example, telemetry studies revealed maximum annual move-
ments of natterjack toads (Epidalea calamita) spanning up to 4.4 km, while model-
ling approaches estimate the dispersal capacity of the species at up to 12.2 km
(Sinsch et al. 2012). In the case of the European stag beetle (Lucanus cervus),
telemetry data showed maximum flight distances of 1720 m for males and about
760 m for females, whereas corresponding models estimated the dispersal abilities
at 3 km and 1 km, respectively (Rink and Sinsch 2007). These differences underline
the importance of further studies focusing on elucidating the true migration capacity
of species.
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From Dispersal to Ecological Connectivity

As shown, the ecological functioning of biodiversity is closely tied to effective dis-
persal, which allows population growth, as well as preserves populations by reduc-
ing intraspecific conflicts and preventing inbreeding (Lowe and Allendorf 2010; see
also Chap. 4). It also serves as the foundation for adaptation to changing environ-
mental conditions. Dispersal therefore acts as an indicator of a population’s fitness
and capability for evolutionary responses. Furthermore, ecological connectivity
throughout a landscape is essential for enabling ecological processes to thrive by
offering the necessary quantity and quality of suitable habitats for species.

Landscape connectivity measures how a landscape either facilitates or impedes
movement across resource patches. It includes both structural connectivity, which
involves physical distances, and functional connectivity, which encompasses the
behavioural responses of organisms to the landscape matrix (Fahrig 2003; Suter and
Schneller 1986; Taylor et al. 1993, 2006) (see Chap. 1). This concept plays a pivotal
role in shaping species’ temporal and frequency variations influenced by individual
dispersal strategies, thereby affecting potential shifts in their ranges. Theoretical
frameworks have striven to map the interaction between the distribution of spatial
and temporal variations in disturbances within the landscape matrix that exert selec-
tive pressures on the evolution of dispersal (Baguette et al. 2013).

In forest ecosystems, for example succession plays a pivotal role in shaping the
evolution of community structure over time. This process is driven by the interplay
of nutrient competition in early succession and light competition in late succession,
both triggered by disturbances (Clements 1936; Odum 1966; Tilman 1985). One
such trend in forest ecosystem succession is the development of species diversity as
ecosystems progress through successional stages (Huston and Smith 1987). These
predictable variations between early and late-successional stages offer valuable
insights into the dynamics of succession. Early successional species exhibit rapid
responses to climate change, swiftly tracking its shifts, whereas mid- to late-
successional species are anticipated to migrate at a considerably slower pace (Meier
et al. 2012). The remarkable ability of early successional species to promptly adapt
to climate change is evident in their nearly instantaneous migration patterns. This
discrepancy can be attributed to specific traits associated with each group. Early
successional tree species often possess attributes such as large-scale and long-
distance seed dispersal mechanisms that facilitate rapid colonization of new areas.
Common dispersal mechanisms of these species include wind- and bird-mediated
dispersal. In addition, early successional species tend to have relatively short life
spans, enabling quick adaptation to changing environmental conditions through the
selection of recombined genotypes (Corlett 2011). On the contrary, mid- to late-
successional species typically exhibit longer life spans and slower rates of reproduc-
tion. Their seeds are fewer in number but larger in size, reflecting more specialized
dispersal mechanisms (Meier et al. 2010). Mid- to late-successional species pre-
dominantly migrate into established forest habitats where they encounter more
inter-specific competition. As a result, the migration of these species occurs more
slowly, requiring more time to establish in new habitats (Meier et al. 2012).
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Migratory Connectivity in Long-Distance Migratory
Animal Species

The presence, quality, and connectivity of suitable habitats for populations are vital
for both long-distance migratory animal species and non-migratory resident spe-
cies. Climate change, degradation, fragmentation, and loss of habitat pose substan-
tial threats to biodiversity, impacting species regardless of their migration or
dispersal strategies (Liu et al. 2015). For long-distance migratory species traversing
continents and covering tens of thousands of kilometers annually, migratory con-
nectivity emerges as a critical factor influencing their survival.

Migratory connectivity refers to the degree of connection between different
regions within an animal’s migratory range, based on the movement patterns of
individual animals (Cohen et al. 2018; Gao et al. 2020). According to this concept,
migratory species depend on crucial habitats during their seasonal journeys, includ-
ing breeding and foraging locations. Ideally, continuous measurement of individu-
al’s locations within populations would enable the identification of crucial habitats,
unveiling the strength of migratory connectivity throughout a year and facilitating
the evaluation of consequences related to disturbances or disruptions. It will be
essential to differentiate between sex and age groups to identify specific places and
times when particular demographic groups are most vulnerable to the disruption of
this connectivity (Briedis and Bauer 2018; Trierweiler et al. 2014).

In the context of long-distance migratory species, it becomes evident that eco-
logical connectivity is a matter of global significance and should be a top priority on
the biodiversity conservation agenda. Climate change is already causing significant
shifts in population movements regardless of species’ capacity to travel long or
short distances. In particular, climate-induced changes necessitate international col-
laboration to facilitate, monitor, and safeguard range shifts within a connected
landscape.

Brief Outlook for Land Managers

In our human-dominated world with prevalent habitat fragmentation, it is crucial
to establish networks of interconnected habitats and populations to conserve and
restore biodiversity. Understanding the dispersal capabilities of different species
is important for establishing effective conservation measures such as the estab-
lishment of stepping stones or corridors designed to connect suitable habitats.
While the complex interplay between dispersal strategies, species-specific charac-
teristics, and the various components of the landscape at different forest succes-
sional stages can be daunting for conservation and forest managers, there is good
news: The rapid development of user-friendly modelling and biodiversity assess-
ment approaches as well as the growing availability of open biodiversity data (see
Chaps. 19, 21, and 33), including data collected through citizen science platforms
(see Chap. 18), is facilitating modelling and aiding decision-making processes.
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These tools assist in identifying areas that improve migration and aid in range
shifts, prioritizing management considerations, and predicting future scenarios
for landscape connectivity.
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Abstract

The importance of saproxylic species within forest ecosystems cannot be over-
stated, as they span a wide range of taxa contributing to the recycling of dying
and dead woody material. Originally defined as invertebrates reliant on decaying
wood, wood-inhabiting fungi, or other saproxylics, the group has been expanded
to include species involved in or dependent on moribund trees and wood decay
processes. Since centuries, their habitat has faced loss and fragmentation from
intensive forest management practices and land use changes, underscoring the
urgency of conservation efforts. While habitat connectivity is crucial for species
dispersal and colonization, evidence supporting its significance for saproxylic
species conservation remains unclear. Dispersal abilities vary considerably
across taxa, highlighting the importance of understanding these differences for
effective forest management aiming at saproxylics conservation. Specialized
species such as fungus-dwelling beetle Bolitophagus reticulatus demonstrate
limited dispersal but robust recolonization capabilities facilitated by the avail-
ability of habitat, in this case, Fomes fomentarius. Similarly, saproxylic fungi
with a broad dispersal ability such as Fomitopsis rosea rely on habitat amount for
successful colonization. Efforts to increase the amount of deadwood at the land-
scape scale thus benefit species (re)colonization efforts. Prioritizing the preser-
vation of large populations and distributing habitat patches are key strategies for
supporting saproxylic biodiversity in forest ecosystems. Aggregating patches
around dispersal sources can attract species of conservation concern, although
identifying these sources remains challenging. Conversely, evenly distributed
habitat patches throughout the forest landscape promote higher species diversity.
A balanced approach combining both aggregation and distribution of habitats
seems therefore essential for effective conservation efforts. However, scientific
evidence tends to prioritize habitat quantity over habitat connectivity for the con-
servation of saproxylic species.

Keywords

Dispersal - Colonization - Habitat amount - Deadwood - Biodiversity conserva-
tion - Forest management

Saproxylic Species and Their Role in Forests

Saproxylics are a functional group of species that are perhaps more than any
other reliant on trees and forest ecosystems, as they inhabit and thrive in dead and
decaying trees. As a result, the significance of deadwood for biodiversity conserva-
tion cannot be overstated, as it provides essential habitats for thousands of species.
Within forest ecosystems, the decay of wood is one of the major ecological pro-
cesses alongside primary production. This process not only facilitates the recycling
of deadwood but also ensures the long-term availability of essential nutrients.
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Originally, saproxylic organisms have been defined as invertebrates that, at least
during some part of their life cycle, rely on the deceased or decaying wood of dying
or dead trees—whether standing or fallen—or on wood-inhabiting fungi, or on the
presence of other saproxylic species (Speight 1989). This definition underwent revi-
sion by Alexander (2008), who shifted the focus toward the ecological functions of
saproxylic organisms and defined them as species intricately involved in or depen-
dent on the process of fungal decay of wood, or on the byproducts of decay.
Moreover, saproxylics are associated with both living and dead woody material,
including not only wood but also bark and sap at any stages of decay.

Saproxylic organisms represent a considerable share of forest biodiversity,
encompassing a large range of species groups ranging from arthropods (such as
insects, especially beetles) to birds (such as woodpeckers) and fungi (such as basid-
iomycetes). The estimated global number of saproxylic species ranges from 0.4 to 1
million. In well-explored Northern Europe, they represent up to 25% of all forest
species, predominantly comprising mainly fungi and invertebrates (Stokland et al.
2012). Among these, insects and fungi are the two largest taxonomic groups, con-
tributing between 30% and over 50% of the total saproxylic diversity in forests. This
represents an important reason to address biodiversity in deadwood. Another reason
is the alarming threat posed to this diversity by habitat loss in managed forests
because of harvesting activities, as well as by loss and fragmentation of forested
areas at the landscape level for centuries. Consequently, saproxylic species are of
considerable conservation concern, as they exhibit high sensitivity to forest man-
agement practices that can alter their habitats by reducing the quantity and quality
of deadwood habitats (Gossner et al. 2013a; Grove 2002; Miiller et al. 2015; Seibold
etal. 2017).

Gossner et al. (2013a) demonstrated a positive effect of deadwood enrichment
initiatives in managed forests, where the presence and variety of saproxylic beetles
are typically limited. The authors determined an immediate increase in species rich-
ness and a shift in guild composition upon increasing the deadwood amount, with
the effect being even more pronounced in the tree canopy compared to the forest
floor. Miiller et al. (2015) showed that regional tree species composition influences
the habitat preferences of early colonizing saproxylic beetle communities, showcas-
ing local variations in their choice of host trees. With an increase in deadwood
amount in European beech forests, Gossner et al. (2013b) observed a noticeable
shift in assemblage composition, with larger species and those favoring deadwood
of greater diameter and advanced decay stages becoming dominant. Plots with a
mean deadwood amount ranging from 20 to 60 m*ha~!' accommodated most species.
Consequently, the authors recommend increasing the deadwood amount to more
than 20 m*ha~!, refraining from the removal of large-diameter deadwood (>50 cm),
facilitating the development of more deadwood in advanced decay stages, and
establishing strict forest reserves characterized by exceptionally high deadwood
amounts. These findings support the ecological thresholds reviewed by Miiller and
Biitler (2010). The authors highlighted deadwood amounts necessary for the conser-
vation of saproxylic species with values ranging between 10 and 150 m*ha~! and
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peak values between 20 and 50 m*ha~! for the survival of most species, depending
on the forest type.

Most saproxylic species are associated with specific habitat quality in terms of,
e.g., decay stage (fresh to soft powdery dead wood), dimension (small branches to
large logs), position (lying or standing deadwood), microclimate, and tree species or
genus (Lachat et al. 2013; Lettenmaier et al. 2022; Vogel et al. 2020). As deadwood
habitats are steadily evolving, saproxylic organisms face the challenge of compen-
sating for local extinctions due to the loss of their habitat through wood decay. To
maintain populations, they must colonize new deadwood structures that are adapted
to their ecological requirements both local and across landscapes (Jonsson and
Siitonen 2012). Their dispersal strategies are affected by numerous driving forces,
including the spatial and temporal variability of habitat within the landscape, feed-
ing strategy, resource competition, and avoidance of inbreeding (Feldhaar and
Schauer 2018). The significance of each factor in shaping dispersal strategy varies
among species, contingent upon their unique life histories, and interactions with the
environment, such as longevity of deadwood habitat. This habitat turnover has to be
considered in conservation measures for this functional group as well as in integra-
tive and segregative approaches (Bollmann and Braunisch 2013; Doerfler et al. 2018).

Habitat Amount vs. Habitat Connectivity

In the course of reduction of natural habitats through human activities, local habitats
get more and more fragmented. Such a fragmented landscape affects local popula-
tions in two ways. First, the distance between patches increases (pure isolation
effect), second the total amount of habitat in a landscape decreases and thereby the
population size of a species in the landscape (Fahrig 2013). While in most land-
scapes nowadays, both habitat amount and spatial connectivity of resource patches
are correlated, it is important to disentangle both mechanisms, particularly for
restoration.

In response to the habitat deficit for saproxylic species resulting from forest man-
agement practices, the conservation of this functional group has become a priority
in landscapes dominated by managed forests. In this context, different measures to
improve habitat availability and amount at the landscape scale can be implemented,
including setting aside natural forest reserves, establishment of (smaller) stepping
stones of old-growth forest patches, or the retention of habitat trees and deadwood
within managed forests (Biitler and Lachat 2009; Komonen and Miiller 2018). The
latter involves preserving trees in managed forests until they decay entirely. The
underlying concept of these conservation measures is to create a network of habitats
capable of supporting saproxylic species that would otherwise struggle to persist in
managed forests due to insufficient deadwood resources (see Fig. 3.1).

This concept draws on the theory of island biogeography proposed by MacArthur
and Wilson (1963, 1967), which posits that smaller and more isolated habitats tend
to harbor fewer species compared to larger and less isolated ones. This theory has
prompted conservationists to prioritize the establishment of singular large areas as
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Fig. 3.1 Concept of habitat connectivity for the conservation of saproxylic species at the land-
scape level based on four different conservation measures: Natural forest reserves, old-growth
forest patches, habitat trees, and deadwood, the last two distributed in a matrix of managed forests
(adapted from Lachat and Biitler 2009)

the optimal conservation strategy for supporting biodiversity rather than implement-
ing multiple smaller areas (Diamond 1975). In 1980, the IUCN developed a global
conservation strategy emphasizing the importance of large contiguous areas in real-
world conservation efforts (World Conservation Strategy).

Testing the validity of the “single large over several small” (SLOSS) theory,
Simberloff and Abele (1982) conducted a comparative analysis of empirical data on
species richness. They found that “not a single case” demonstrated superior species
richness in single large habitats compared to several smaller ones covering the same
total area. Conversely, most studies demonstrate that the same amount of habitat in
a landscape with multiple small areas harbored more species than a single large one.
Similar studies focusing on various species, such as Fahrig (2017), have echoed
these findings, consistently indicating that species richness is higher in multiple
small areas than in a single large one. The mechanisms behind this pattern range
from increased habitat heterogeneity provided by more patches to ecological drift
(Fahrig et al. 2022; Hovestadt et al. 2024).

Although scientific evidence consistently supports the superiority of several
small protected habitats over a single large one, discussions among ecologists per-
sist in part due to sampling biases in many SLOSS studies, where sampling inten-
sity is not proportional to habitat size. Fahrig’s (2020) research on species extinction
challenges the assumption that larger habitats inherently support greater species
richness because species depending on larger habitats for survival may become
extinct in smaller habitats over time (process of selective extinction). However, even
in studies with unbiased sampling efforts, several small areas exhibited higher spe-
cies richness. This trend persisted when examining extinction rates in small areas,
even within low-quality or hostile matrices, and held true for specialist species as



44 T.Lachat et al.

well. These findings suggest that species richness may be driven more by individual
species’ minimum habitat requirements than by minimum area size requirements,
as emphasized by the Habitat Amount Hypothesis (Fahrig 2013). This hypothesis
advocates for considering the overall amount of available habitat in an area rather
than the size of the area to estimate species richness. For example, a large managed
forest may provide a lower amount of deadwood than a smaller area of prime-
val forest.

The fragmentation of forest landscapes inevitably leads to reduced deadwood
habitat availability and increased distances between dead trees, which can be termed
isolated or connected depending on perspective (Lachat and Miiller 2018). However,
for forest management and conservation, the spatial distribution of restoration
efforts such as retention of habitat trees or establishment of old-growth-forest
patches or natural forest reserves significantly influence timber production and eco-
system services depending on their location. Conservation measures often prioritize
either the creation of new suitable habitats within a forest area or the enhancement
of connectivity to reduce habitat isolation. These differing concepts entail signifi-
cant planning and financial implications, which can vary considerably depending on
the initial conditions of the forest area. A comprehensive understanding of these
factors is therefore crucial for successful restoration efforts.

Spatial Arrangement of Conservation Measures

Although concepts for habitat connectivity are widely accepted and integrated into
many regional or national conservation strategies (see Chap. 22), there exists lim-
ited scientific evidence supporting the need for connectivity regarding the conserva-
tion of saproxylic species. Dispersal abilities vary greatly across taxa, with only a
few species’ abilities well understood. Nevertheless, understanding these abilities is
crucial and can greatly improve forest management and conservation efforts, par-
ticularly in terms of the required spatial and temporal distribution of suitable habi-
tats to enhance species persistence (Oettel et al. 2023).

The distribution of habitat within a landscape, whether aggregated or evenly dis-
persed, can influence the ability to maintain biodiversity across the landscape.
While direct comparisons between areas with aggregated and distributed habitats
are lacking, studies focusing on habitat patches within different landscape contexts
have shed light on this issue. These studies assess whether aggregated landscapes
host greater species richness compared to dispersed ones. Their findings indicate
that distributing conservation efforts evenly across smaller patches covers greater
landscape heterogeneity, potentially resulting in higher species richness (Fahrig
et al. 2022; Haeler et al. 2024; Miiller and GoBner 2010; Rubene et al. 2015).
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Examples of Saproxylic Beetles

Saproxylic beetles are excellent ecological indicators for the quantity and quality of
their habitat (e.g. Lachat et al. 2013) and therefore well adapted for testing hypoth-
eses on habitat amount and connectivity in forest ecosystems. Each piece of dead-
wood—including logs, snags, and other saproxylic habitats like tree hollows or
dead branches—undergoes constant evolution. Throughout the decay processes, the
biotic and abiotic conditions of deadwood habitats constantly alter, thus influencing
species assemblages. Schmidl and Bussler (2004) have categorized them into differ-
ent guilds, spanning from initial colonizers of fresh deadwood to inhabitants of
aged, decayed wood, including species developing in the mold of rot-holes.
Saproxylic species have evolved as a group capable of continuously seeking out
new habitats adapted to their specific requirements, as individuals must relocate
when deadwood decays further. This raises the fundamental question of how far
saproxylic beetles are able to disperse once they have to relocate following changes
in their habitats that render them unsuitable for their development.

The empirical evidence regarding the dispersal ability of saproxylic species and
the importance of connectivity to them is mainly indirect. It relies on comparisons
of species presence/absence or richness in forest stands with varying degrees of
spatiotemporal isolation or in landscapes exhibiting different levels of fragmenta-
tion (Sverdrup-Thygeson et al. 2014). Although such occupancy studies can offer
valuable insights into the importance of dispersal and connectivity, few have been
able to differentiate between habitat connectivity and habitat amount (or between
dispersal limitation and habitat limitation) at scales relevant to management (Fahrig
2013). An experiment by Seibold et al. (2017) with different amounts of local dead-
wood habitat in landscapes with different amounts of dead trees, found no evidence
for isolation effects but for habitat amount effects on saproxylic beetle diversity.
Taking together the current evidence on the importance of isolation and resource
amount, the conservation efforts for saproxylic beetles should prioritize increasing
the amount of deadwood wherever possible.

Peltis grossa, a specialist beetle of primeval forests, breeds in standing stems
with brown-rotted wood of different coniferous tree species (Palm 1951; Saalas
1917). This species gets locally extinct because of the lack of suitable breeding
substrate in managed forests (Weslien et al. 2011). Initially considered regionally
extinct in Bavaria National Park, its return was triggered by forest dieback caused
by windstorms and bark beetle invasion (Busse et al. 2022). In Sweden, initial find-
ings on P. grossa reveal an increase in colonization rate and a decrease in extinction
risk with higher connectivity (100-200 m) (Djupstrom et al. 2012, 2024). However,
this association was only evident when using connectivity-based information on
species abundance. Structural measures of connectivity, such as the number of
snags, failed to show any significant relationship. Despite generally optimal habitat
conditions in Bavaria National Park, including a substantial increase in deadwood
until the 1990s, P. grossa was absent. This may be attributable to irregularly distrib-
uted amounts of deadwood, with a less pronounced increase in deadwood in the
refuge area of a smaller source population in the south. Bark beetle invasion in
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subsequent years led to a population explosion of P. grossa, resulting in rare long-
distance dispersal events and eventual colonization of the national park. By recon-
structing the recolonization in Bavaria National Park, Busse et al. (2022) determined
dispersal distances of up to 10—40 km, above which colonization rates significantly
decreased. This indicates that the source population in the south before the bark
beetle invasion was insufficient to fully recolonize the new habitats within the
national park.

The rare hermit beetle Osmoderma spp. is associated with hollow trees, where its
larvae develop in mold. For this rare species, different methods yielded similar dis-
persal distances (see Fig. 3.2), even though dispersal rates and distances seemed
smaller for Swedish populations compared to those in more southern European
regions. Populations of O. barnabita exhibited positive kinship up to 10 km, indi-
cating a limit to their dispersal at this scale. The estimated average dispersal dis-
tance is much larger than the results for Osmoderma spp. using other methods
(Oleksa et al. 2013). A study on the colonization-extinction dynamics of O. eremita
over 25 years (Lindman et al. 2020) showed that colonization rates increased with
connectivity at a 60-m scale and with tree characteristics indicative of early succes-
sional stages, leading to higher occurrence frequencies per tree. Conversely, extinc-
tion rates increased with larger tree diameter, indicating late succession stages.
Most O. eremita individuals stay in the same hollow tree throughout their lifetime,
with dispersal typically occurring between trees at distances of less than 250 m from
one another (Dodelin et al. 2017). Although long-distance dispersals are rare, this
does not mean that the species cannot fly further. These findings underscore the
importance of connectivity, as O. eremita is more likely to colonize or recolonize
habitats within about 200 m. However, these initial observations regarding its flight
capabilities have been revised with subsequent studies, indicating that O. eremita is
indeed capable of flights spanning several kilometers (Fig. 3.1).

Tenebrio opacus is known to inhabit hollow oak trees in pastures (Ranius and
Fahrig 2006). A notable threshold regarding the frequency of presence per tree
emerges in small areas with fewer than 10 hollow trees, where less than 5%
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occupancy is observed. However, this threshold significantly increases to over 40%
occupancy per tree in areas with 11 or more hollow trees. This phenomenon is
closely linked to the persistence of habitat over time. Highly specialized species like
T. opacus may have developed strategies to thrive in long-lasting habitats such as
hollow trees over generations. However, the spatial scale for measuring habitat
amount involved oak trees located less than 250 m apart, indicating a sensitivity to
habitat fragmentation (Ranius 2002).

Examples of Saproxylic Fungi

Wood-inhabiting fungi produce billions of minuscule spores daily with deposition
rates ranging from 10 to 1000 spores per m? per day (Edman et al. 2004a). Notably,
some old-growth forest species, like Fomitopsis rosea, can deposit even higher
amounts, exceeding 5000 spores per m2 daily. F. rosea also exhibits a considerable
dispersal ability. Even in landscapes with low proportions of old-growth forests, this
species has been found to have spores present in sufficient quantities, suggesting
potential for long-distance dispersal (Edman et al. 2004b). Despite this figure
appears substantial, the precise threshold required for successful colonization is
unknown (Edman et al. 2004a). Moreover, colonization of deadwood appeared to
rely on neighboring occurrences of the species (Edman et al. 2004b; Jonsson
et al. 2008).

Edman et al. (2004b) discovered that sites rich in deadwood generally harbor
greater species richness, with several species being abundant due to high spore
deposition from the local species pool. For instance, species like Asterodon ferrugi-
nosus, Phellinus ferrugineofuscus, P. viticola, and Phlebia centrifuga exhibited a
preference for colonizing deadwood near previously occupied pieces. Jonsson et al.
(2008) demonstrated the significant influence of both local deadwood characteris-
tics within patches and connectivity between patches in an old-growth boreal
Norway spruce forest on fungi species dynamics. According to the authors, sub-
strate decay and resource disappearance are the main causes of local extinctions.
This is in line with findings by Norros et al. (2012), showing a higher colonization
probability on logs within a distance of up to 60 m from sporocarps. However, fungi
still distribute spores beyond this distance, suggesting low or no dispersal limita-
tions extending over several kilometers.

The duration of persistence on one resource depends on the specific habitat
requirements of fungal species. Early successional species like P. ferrugineofuscus
and Stereum sanguinolentum display high annual extinction rates, whereas late suc-
cessional species like Phellinus nigrolimitatus exhibit lower rates. Jonsson (2012)
summarizes time windows of up to 20 years for occurrences of deadwood-inhabiting
fungi, with typical durations of less than 8 years. However, persistence time analy-
ses for wood-inhabiting fungi are still scarce.
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Biotic Interactions of Fungi and Beetles

Successful colonization requires both dispersal and establishment. Establishment
relies on the availability of suitable habitat (substrate). The suitability of a substrate
is determined by its characteristics, biotic competitive interactions, and abiotic con-
ditions (Jonsson 2012). Characteristics encompass aspects like tree species, decay
stage, genesis history, moisture content, chemical composition of deadwood, and
temperature. Furthermore, the establishment of some species of fungi relies on
biotic interactions. Indeed, some fungi species utilize specific vectors for establish-
ment; for instance, Amylostereum areolatum depends on Sirex wood wasps for the
transfer to suitable substrates. Other examples include blue-stain fungi and bark
beetles inducing establishment through vector interactions. Sequencing fungi from
saproxylic beetles revealed a high diversity of fungi transported by beetles (Seibold
et al. 2019). Experiments have shown that the presence of saproxylic insects can
affect the community of fungi (Jacobsen et al. 2018; Zou et al. 2023). Nonetheless,
the relative importance of insects under natural conditions remains unclear
(Sverdrup-Thygeson et al. 2014).

Zytynska et al. (2018) examined the fungus-dwelling beetle Bolitophagus reticu-
latus breeding on Fomes fomentarius in a broadleaf forest of southern Germany.
The study revealed that the population genetic structuring is largely influenced by
forest management history. Nevertheless, low isolation-by-distance and limited
relatedness among beetles collected from the same trees or fungus occurrences sug-
gest robust dispersal enabling recolonization across considerable distances. It is
expected that genetic structuring will continue to decrease in the future, emphasiz-
ing that the increase of deadwood amount—regardless of its spatial arrangement—
can foster species recolonization. As long as relic populations persist, the increase
of deadwood amount and diversity can support to increase population sizes suffi-
cient for the dispersal and recolonization of habitats.

Komonen and Miiller (2018) gathered evidence demonstrating species-specific
dispersal limitations for saproxylic insects and fungi at different spatial scales rang-
ing from local (<50 m) to continental (>500 km) scale. Adult beetles disperse pri-
marily through active flight, while fungi rely mainly on wind dispersal over longer
distances (anemochory), making them more effective dispersers. Based on this
review, insects show a majority of dispersal limitations at larger scales such as
regional and continental scales, whereas even rare fungal species hardly exhibited
any dispersal constraints. The authors concluded that while systematic and species-
specific differences exist, most saproxylic species face colonization and establish-
ment limitations in terms of finding suitable habitats rather than true dispersal
limitations at management-relevant scales (see Fig. 3.3).

Implications for the Conservation of Saproxylic Species

Saproxylic species exhibit significant variations in their dispersal abilities and habi-
tat requirements. For instance, species associated with ephemeral habitats like fresh
deadwood, such as early successional bark beetles (Scolytinae), can disperse over
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large distances and swiftly locate and colonize new habitats. Additionally, these
species are characterized by high reproductive rates (r-strategies) and can produce
up to four generations per year (Perny et al. 2008; Steyrer et al. 2020). In contrast,
species linked with long-lived habitats, such as hollow trees with mold, are less
mobile and have lower reproduction rates (k-strategies). Such long-lasting habitats
can harbor populations over multiple generations spanning decades, resulting in
reduced dispersal necessity and limited individual mobility. However, dispersal is
often underestimated. New research frequently reveals higher dispersal rates and
distances than previously anticipated. Nevertheless, dispersal limitations exist
among saproxylic beetles beyond 10 km. Other insect species in deadwood as some
syrphids show similar dispersal abilities as beetles up to many kilometers. For fungi,
which together with beetles represent the most diverse saproxylic group, the situa-
tion is even less critical. The production of huge quantities of spores highlights the
importance of suitable habitat rather than the necessity of connectivity for the con-
servation of this group.
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Accumulated knowledge for both species groups—beetles and fungi—suggests
that the availability of habitat amount in the landscape is by far more critical than
habitat connectivity. This holds true for the spatial scale at which forest managers
operate. It is important to note that an increase in habitat amount can also enhance
connectivity by enhancing population sizes, thereby increasing the number of dis-
persing individuals or serving as the most important component for dispersal.
Moreover, it contributes to a reduction in spatial distances between deadwood
objects. As more effective and better grounded by ecological studies, current knowl-
edge suggests a focus on habitat amount management rather than on spatial dis-
tances in deadwood management.
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Abstract

Genetic diversity is a key pillar of biodiversity, underlying the adaptive potential
of any species. At the same time, it is difficult to quantify this component of
biodiversity, and we know very little about the genetic diversity status of most
species. A wealth of studies points toward a substantial decline, which is also
apparent in numerous forest species. Connectivity is fundamental to maintaining
high levels of genetic diversity and adaptability via gene flow between popula-
tions. In this chapter, we attempt to elucidate the importance of genetic diversity
for the entire forest ecosystem with a focus on its main components: tree species.
We elaborate on the anthropogenic factors impacting forest diversity, like exploi-
tation and artificial regeneration, climate change, and introduced pests. An over-
view of molecular methods for studying genetic diversity and connectivity is
presented. Regular genetic monitoring is imperative for optimizing conservation
strategies such as the creation of stepping stones to counteract population frag-
mentation. We highlight the importance of taking genetic diversity into account
when sourcing plant material for forest and landscape restoration projects.
Finally, international efforts to conserve genetic diversity are presented along
with recommendations on suitable indicators to monitor it. Scientists working on
genetic diversity are encouraged to actively participate in national and interna-
tional processes to incorporate genetic principles into policy development as
well as conservation and restoration efforts.

Keywords

Climate change - Forest genetic resources - Forest reproductive material - Genetic
rescue - Human impact

The Importance of Genetic Diversity for Forest Ecosystems
Processes Affecting Genetic Diversity in a Changing Climate

Genetic diversity is an intrinsic and essential element of biodiversity, encompassing
the variation of genetic traits within a population, a species, or an entire ecosystem.
All forms of biological diversity are based on the genetic variation found within
populations. The variability of genetic traits can be seen as the “raw material” of
evolution since the change, further development, and adaptation (see Box 4.1) of a
species in response to changing environmental conditions depend on it. Without a
sufficient amount of genetic diversity, the long-term survival of any species is at
risk. It is decisive for species’ ability to cope with and adapt to new stresses such as
changing site and climate conditions or novel pests (Fisher 1930; Pitelka 1988;
Pease et al. 1989; Burger and Lynch 1995; Burdon and Thrall 2001; Etterson 2004;
Reusch et al. 2005; Schaberg et al. 2008). Importantly, genetic diversity is a direct
function of population and ecosystem connectivity, which determines the extent of
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genetic variants exchanged between patches in a fragmented habitat (Lowe and
Allendorf 2010).

When it comes to the analysis and conservation of genetic diversity, the popula-
tion emerges as the most significant unit. Population genetic diversity is affected by
a range of factors, among which genetic drift and inbreeding can be considered the
most important for biodiversity conservation (Allendorf et al. 2022) since they play
a major role in small populations (Fig. 4.1). Drift affects all members of a popula-
tion equally and has the greatest influence when the effective population size (N,) is
small (see also Chap. 5). In the majority of species, some populations have under-
gone a bottleneck during their more or less recent evolutionary history, for example,
due to range contraction as a consequence of periods of glaciation. These fluctua-
tions in population size lead to recurrent reductions in the genetic variation of popu-
lations. The random recruitment of genetic variants by drift causes changes in the
genetic composition of populations that may have a negative effect on their fitness
and adaptive potential. Therefore, a large N, is most important for population and
species survival. As discussed in more detail in the following, N, is considered a
suitable indicator for evaluating whether a population needs conservative interven-
tion (prioritization of conservation efforts), but it is also very difficult to determine
in practice (Waples 2002; Santos-del-Blanco et al. 2022).

Through the exchange of genetic variants, gene flow shapes the genetic composi-
tion of species, maintaining shared diversity across different populations. On the
other hand, gene flow also homogenizes genetic variation across populations, thus
counteracting local adaptation; however, it is generally regarded as beneficial in
terms of preserving genetic diversity, enhancing the fitness of fragmented popula-
tions, and minimizing the effects of drift and inbreeding (Ralls et al. 2018). Most
importantly, gene flow is an immediate and fundamental measure of population
connectivity. By reducing the ability of a species to migrate and exchange genes
among populations, reduced connectivity exacerbates the effects of climate change.
In the geological past, forest species have modified their distribution ranges through
migration to more favorable environments multiple times (Bernabo and Webb 1977;
Webb III 1981; Davis 1983; Huntley and Birks 1983; and review by Geber and
Dawson 1993; Huntley and Webb III 1988). However, the current climate change
and habitat fragmentation processes are likely too fast to be compensated by natural
migration rates (Huntley 1991; Davis and Shaw 2001; Jump Pefiuelas 2005).

Natural selection acts against individuals with low fitness, purging deleterious
genetic variants while favoring beneficial ones. It can thus change the allelic com-
position of a population rapidly, for example, in the case of the appearance of a
novel pathogen causing a selective sweep. Such adaptive shifts leave recognizable
signatures at the genomic level (e.g., Pritchard et al. 2010) and can describe certain
adaptive patterns in natural populations. Nevertheless, phenotypic traits are often
polygenic with a complex genetic architecture and do not respond to selection via
pronounced frequency changes of few genetic variants (Hollinger et al. 2019). Due
to redundancy in polygenic traits, most genetic loci likely contribute only tran-
siently to a change in the phenotype (Yeaman 2015), meaning that the adaptive trait
architecture (Barghi et al. 2019; Pritchard et al. 2010) varies strongly over time and



58 H. Konrad et al.

Ne of putative species inhabiting the patch — Geneflow
|
Ne> 1,000 Ne< 100 Aad Expectedrange

contraction dueto
m e.g. increasing
urbanization
Drift and inbreeding

Fig. 4.1 A forest landscape in Upper Austria (Schénau im Miihlkreis), typically fragmented by
agricultural and urban land (top), along with an idealized and simplistic representation of the
degree of gene flow between the forest patches (bottom). Note that the depicted processes are
species-specific and cannot be realistically represented for multiple species in a single illustration.
Thicker, thinner, and dashed arrows indicate more frequent, less frequent, and rare gene flow,
respectively. Note that gene flow between two specific patches is often asymmetrical. Red curves
and arrows symbolize the direction of plausible future range contraction in already urbanized
areas, leading to further reduction and fragmentation of existing patches. The gray color gradient
indicates larger (lighter) to smaller (darker) Ne, which is accompanied by a parallel decrease in the
strength of selection along with increases in the effects of drift and inbreeding as well as the prob-
ability of local extinction. (Drone photography by Florian Winter)
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multiple molecular mechanisms are available to organisms during adaptation
(Leinonen et al. 2013; Luo et al. 2014; Szukala et al. 2022; Yeaman 2022). Several
studies have found theoretical and experimental evidence that a sufficient amount of
genetic variation must be present in populations for adaptation to take place via
small adaptive shifts, as expected under the framework of polygenic adaptation and
redundancy (Bakker et al. 2010; Fagny and Austerlitz 2021; Sinclair-Waters et al.
2020; Thornton 2019). Moreover, Bakker et al. (2010) demonstrated that prolonged
habitat fragmentation with limited gene flow severely limits the adaptive potential
of species, given that adaptive genetic variation is scattered across patches, reducing
the adaptive potential of individual subpopulations. Thus, given the complexity of
the genetic basis of adaptation, the amount of genetic variation available must be
“large enough” (see section “Connectivity Conservation Strategies and Actions”
below for further insights on this concept) and/or subpopulations sufficiently con-
nected for adaptation to occur.

Species can also react to differing environmental conditions by way of pheno-
typic plasticity, changing a phenotypic parameter like tree height or behavior in
reaction to a change in the environment (Nussey et al. 2005). These phenotypic
adjustments are reversible and occur if the underlying genetic architecture permits
it and the energetic cost is not too high (DeWitt et al. 1998). Under certain circum-
stances, plasticity can be adaptive, bringing the phenotype closer to an optimum
(e.g., Nicotra et al. 2015), but neutral and even maladaptive effects of plasticity have
been documented as well (e.g., Arnold et al. 2019). How and when phenotypic plas-
ticity supplies the variation targeted by selection and contributes to adaptation is a
matter of debate (Wund 2012; Levis and Pfennig 2016; Fox et al. 2019; Szukala
et al. 2023). In the context of biodiversity conservation, it is important to note that
plasticity has intrinsic physiological limits (DeWitt et al. 1998) that are likely
exceeded by the demands of climate change for most species, as suggested by sev-
eral studies (e.g., Forcada et al. 2008; Reed et al. 2011).

Three key means by which species can react to climate change can be deter-
mined: (1) Dispersion of seed or vegetative propagules into a more favorable envi-
ronment (i.e., similar to the native environment prior to climatic change); (2)
changes in allelic composition in response to natural selection, resulting in better
adaptation to the new environment (Burdon and Thrall 2001; Reusch et al. 2005);
or, when the genetic architecture permits it, (3) phenotypic plasticity changes to
cope with the new conditions. As mentioned above, both the capacity to migrate—at
least, without human intervention—and the ability to respond plastically to chang-
ing conditions are limited: Migration rates and plastic reaction norms are mostly
exceeded by climate change and human-induced habitat modification. Maintaining
sufficient genetic variation through population connectivity is therefore essential for
enabling adaptation—or, in a human-driven context, for delivering the material for
artificial selection, marker-assisted breeding, assisted migration, and even gene
editing. It is important to note that evidence of the positive effects of selection on
fitness in the wild has been reported (Bonnet et al. 2022), suggesting that many spe-
cies do indeed have the potential to adapt to ongoing climate change. Nevertheless,
we must also remember that every species has its own reproductive and genetic
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systems that interact with the described evolutionary processes in specific ways to
shape that species’ genetic diversity. Therefore, a profound understanding of spe-
cies-specific population genetic dynamics and demographic and evolutionary histo-
ries is required to carefully evaluate the state of individual species and optimize
conservation efforts.

Box 4.1 Glossary of classical population genetic terms used in the

current chapter

Adaptation
Bottleneck
Demographic
connectivity

Effective population

size, N,

Gene flow

Genetic architecture

Genetic
connectivity
Genetic drift
Inbreeding

Local adaptation

Natural selection
Phenotypic
plasticity

Population

Polygenic
Redundancy

Selective sweep

An evolutionary process that increases an individual’s probability
of survival and reproduction in a given environment.

A sharp reduction in population size due to stochastic events.

The effects of dispersal on population growth and mortality (Lowe
and Allendorf 2010).

The size of a theoretical population in which the genetic
composition is affected by the same degree of random change
(drift) and inbreeding as the observed population.

Effective transfer of genetic material by pollen containing the
haploid male gametophyte resulting in fertilization and
development of a diploid embryo.

The sum of all genetic loci contributing to a trait of interest,
including their effect size on the phenotype, their position in the
genome, and their interaction (i.e., linkage disequilibrium,
epistatic interaction, and pleiotropy).

The effects of gene flow on population evolution (Lowe and
Allendorf 2010).

Changes in allele frequency due to random effects (e.g., natural
catastrophes, such as wildfires and storms).

The mating of individuals that are genetically closely related,
including self-fertilization.

The process by which a population evolves to be more suited and
better adapted to its local environment than other populations
within the same species.

The process by which individuals with higher fitness are more
likely to survive and produce progeny.

The same genotype can modify the expression of the phenotype in
different environments (Schlichting and Pigliucci 1998).

A group of interbreeding individuals of the same species that live
in the same place at the same time.

Governed by large amounts of genetic variants.

Different combinations of genetic variants can produce the optimal
phenotype (Goldstein and Holsinger 1992).

The process by which positive selection increases the frequency of
a beneficial mutation in the population, leading to a frequency
increase of other mutations linked to the beneficial one (so-called
hitchhikers) and, in consequence, to a decrease of genetic diversity
in the genomic region surrounding the beneficial mutation.
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Genetic Diversity of Forest Foundation Species

Foundation species, such as trees in forest ecosystems, have been defined as species
that structure a species community by creating locally stable conditions for other
species as well as by modulating and stabilizing fundamental ecosystem processes
(e.g., Dayton 1972; Whitham et al. 2003). The field of community genetics has
shown that the genetic diversity of the main tree species in a forest can affect the
community of dependent species (e.g., microbes, plants, arthropods, birds, and
mammals) (Whitham et al. 2003). To cite an example, Tovar-Sanchez et al. (2013)
found evidence of higher arthropod diversity in the crown of oaks positively associ-
ated with the within-population genetic variation of the host plant. In addition, accu-
mulated evidence shows direct impacts of foundation species’ intraspecific genetic
diversity on several ecosystem processes such as primary productivity, population
recovery from disturbance, interspecific competition, community structure, and
energy and nutrient flows (Crutsinger et al. 2007; Hughes et al. 2008). Studying the
interactions between the genetic diversity of foundation species and several ecosys-
tem components should allow us to develop better strategies for preserving biodi-
versity and ecosystem function in the face of forest fragmentation, climate change,
and introduced pests (Whitham et al. 2006). Therefore, the conservation of genetic
diversity and population connectivity of trees merits special attention. Indeed, the
genetic diversity of foundation tree species has been the focus of multiple studies
pursuing a better understanding of forest genetic resources (FGR) and how to
improve their conservation (e.g., Geburek and Konrad 2008).

Trees are among the organisms with the highest genetic diversity (Hamrick and
Godt 1990). This diversity within and among natural populations provides the foun-
dation for forest ecosystem stability in variable and changing environments
(Gregorius 1996; Petit and Hampe 2006), as well as for relatively rapid adaptive
responses to environmental challenges (Alberto et al. 2013; DeHayes et al. 2000;
Davis and Shaw 2001). For example, forest trees? reacted to dramatic changes in
climate and other stresses several times during the quaternary period, both through
adaptation and migration (Davis and Shaw 2001; Petit et al. 2004). Nevertheless,
within-species tree genetic diversity must be complemented by diversity at the spe-
cies level of another organismal group to ensure tree population stability; for exam-
ple, trees rely on other organisms for their survival, needing pollinators (e.g., insects,
bats, and birds) and seed dispersers (e.g., birds and mammals). The survival and
genetic diversity of these dispersers are therefore likewise important for the long-
term resilience of forest ecosystems. The number of studies on the genetic diversity
of organisms associated with forests is large, yet these species are still understudied
and the results are scattered among the body of conservation genetics literature.
Nevertheless, a large body of literature points toward a strong decline in genetic
diversity of pollinator and seed disperser species (Exposito-Alonso et al. 2022;
Hoban et al. 2023a, b).

Populations experiencing a rate of environmental change beyond the rate at
which they can adapt or disperse are threatened by decline (Lynch and Lande 1993;
Burger and Lynch 1995; Visser 2008). At present, anthropogenic climate change is
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quickly altering the natural environment: The current biodiversity crisis is manmade
and requires active interference to be halted and reversed. We have reached a state
in which fragmentation is reducing effective population sizes and impeding gene
flow among populations (Fig. 4.1). As a result, the genetic diversity of forest species
is under considerable threat due to multiple anthropogenic factors, with climate
change, the introduction of novel pests and diseases, and forest fragmentation rep-
resenting the main threats (which will be discussed in more detail in the following
section). Connectivity between forest populations is pivotal to the conservation of
genetic diversity and species survival, but it is also one of the aspects most heavily
affected by human impact. Every effort needs to be made to maintain forest ecosys-
tems. In particular, since most current threats to biodiversity and the genetic diver-
sity underlying it are manmade, it is our obligation to mitigate anthropogenic
impacts and take action to increase or at least preserve the remaining levels of
genetic diversity to prevent further loss and, eventually, the collapse of forest
ecosystems.

In this chapter, we attempt to review the current state of forest genetic diversity
and connectivity, with a special focus on (i) the major anthropogenic threats impact-
ing them, (ii) the available tools used for their assessment, including the respective
advantages and limitations, and (iii) the guidelines currently in use for genetic mon-
itoring and global conservation initiatives. We emphasize that genetic diversity and
connectivity are difficult to assess, especially on a large scale and for many species,
but nevertheless necessary to inform conservation practices. Evaluation is demand-
ing in terms of time, funding, and other resources, especially when molecular meth-
ods are used (which is necessary for most species). At the same time, genetic
monitoring and easy-to-apply indicators are urgently needed to inform policy mak-
ers and define conservation priorities.

Anthropogenic Impacts on Genetic Diversity
in Forest Ecosystems

Climate Change

Human alteration and management of forest ecosystems have heavily impacted the
genetic diversity of forests; in some regions, this impact has been ongoing for mil-
lennia. Only a brief overview of this topic, which has been more broadly assessed,
e.g., by Ledig (1992), Savolainen and Kérkkidinen (1992), and Lefevre (2004), can
be presented here. At present, the primary threat is climate change. It is expected
that population dieback and/or increased selection pressure—e.g., due to prolonged
periods of drought—may erase genetic variation in populations that have already
suffered a loss of genetic diversity due to human activity in the past (Alsos et al.
2012; Armbruster and Reed 2005; Pauls et al. 2012). Due to its crucial importance,
the multiple effects of climate change on forest ecosystems are discussed in detail
in Chaps. 5 and 6. Here, we will focus on a specific aspect that also impacts repro-
ductive biology, genetic diversity, and the survival of forest species, namely the
influence of climate change on the masting behavior of forest trees.
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Mast seeding—the large-scale, synchronized interannual variation in seed pro-
duction among populations of forest trees—is a phenomenon exhibited by many of
the foundation tree species in temperate forests, including oak, beech, spruce, and
pine. The enhancement of pollination efficiency and the decrease of seed predation
in mast years have been suggested as the main benefits of masting for tree reproduc-
tion (Kelly et al. 2001). There is now increasing evidence that climate change dis-
rupts masting dynamics, likely leading to a decrease in the long-term regeneration
of masting plants (Foest et al. 2024). In turn, decreased regeneration potential is
expected to impede the rapid geographic range shifts required to maintain species
within suitable habitats under the scenario of climate change (Walther et al. 2002;
Chen et al. 2011). Alarming evidence was provided by Bogdziewicz et al. (2020),
who showed that climate warming decreased the interannual variability of seed pro-
duction and the reproductive synchrony among individuals in European beech.
These effects led to lower pollination success as well as greater loss of seeds to
predators, offsetting the benefits of masting dynamics even though climate warming
has increased the overall seed production of European beech over the last few years.
Moreover, the authors showed that seed viability is decreasing, especially in old
trees. In connection with the effects of forest fragmentation like increased inbreed-
ing and lower fitness among offspring (see below), these findings offer a pessimistic
outlook for the future of many forest species if no countermeasures are taken.

Deforestation

The most profound and direct impact on all levels of forest biodiversity is caused by
deforestation, meaning the permanent removal of forest growth, which is equivalent
to habitat loss for all forest species. Deforestation has accompanied cultural devel-
opment since prehistoric times and has resulted in a steady decrease in forest cover
on a global scale. Deforestation for agricultural and human development has been
less frequent at higher latitudes and high elevations while being most severe in
tropical countries (Balboni et al. 2023)—for example in Ethiopia, where 60% of the
forest area recorded at the end of the nineteenth century was lost during the twenti-
eth century (Oljirra 2019). Unfortunately, this process is still ongoing. Globally, we
are currently still losing more forest than is being restored (ca. ten million ha per
year; FAO 2022). The majority of forest area is destroyed for agricultural purposes
(including pastures) in the southern hemisphere. By contrast, deforestation has been
halted in most countries of the northern hemisphere, where the total forest area is
presently increasing again (FAO 2022). Forest restoration is one of the key
approaches to mitigating the effects of climate change, with the additional benefit of
restoring forest biodiversity, at least in the long term (e.g., European Green Deal;
EC 2019). The effects of deforestation on genetic diversity and species survival are
most severe when whole populations are lost, or even entire species go extinct. The
latter case has primarily been observed for endemic species with restricted distribu-
tion, especially on islands (e.g., Madagascar; Allnutt et al. 2008), and should not be
underestimated since such events are impossible to reverse.
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Fragmentation

A common result of deforestation is forest fragmentation, which is currently viewed
as the greatest issue concerning long-term species survival, particularly in the face
of climate change. Forest fragmentation subdivides populations into smaller sec-
tions and creates barriers to migration. Eventually, this process leads to inbreeding
in the forest fragments, which has long-term negative effects on population fitness
and adaptability to environmental change. Moreover, demographic stochasticity or
drift effects (the decline of populations due to random effects like browsing or fire)
can have an earlier and more immediate effect in small forest fragments, thereby
quickly leading to local extinction (Lande 1988). The size of forest fragments is
therefore very important: Larger fragments can hold more individuals of more spe-
cies as well as attract more migrants, which in turn reduces the effects of population
isolation. Most tree species have developed mechanisms for long-distance dispersal
of their propagules. Nevertheless, a review of the effects of fragmentation on the
genetic diversity of plant species shows that tree species are affected by disruptions
of their gene flow in the same ways as herbaceous species (Vranckx et al. 2012;
Aguilar et al. 2019). The only likely exception to this general rule are species pol-
linated by vertebrates (birds and bats; mostly in tropical regions), which can fly long
distances and are thus able to counteract fragmentation by maintaining pollen flow
among population fragments (Hadley and Betts 2009).

The effects of fragmentation extend further than the mere loss of alleles and
increased rates of inbreeding in adult individuals: It also causes changes in repro-
ductive output. Due to pollen limitation, both the reproductive output and genetic
diversity of the offspring are reduced (Aguilar et al. 2006; Leimu et al. 2006;
Honnay and Jacquemyn 2007; Vranckx et al. 2012), and inbreeding strongly affects
the performance of the progeny—in other words, fewer offspring with a lower
chance of survival are produced (Aguilar et al. 2008; Vranckx et al. 2012). These
factors work together to increase seedling mortality, which impedes natural regen-
eration and leads to local extinction (Charlesworth and Willis 2009; Gonzalez-Varo
et al. 2010; Ashworth and Marti 2011; Aguilar et al. 2012). The quality of planting
material is also decisive for the success of forest and landscape restoration (FLR)
(Maginnis and Jackson 2007), but this is often neglected in practice (Jalonen et al.
2018). Implications for forest restoration efforts and possible ways to improve the
situation are further elaborated and discussed in Box 4.2. A variety of management
strategies have been developed to counteract fragmentation, including the creation
of habitat corridors and stepping stones, under- and overpasses for animals, and
supplementation of populations by adding individuals from other populations to
increase genetic diversity and population size, a strategy termed “genetic rescue”
(Allendorf et al. 2022).
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Overexploitation

A further anthropogenic impact is overexploitation. With regard to forest trees in
particular, excessive harvesting can severely impact a species’ genetic diversity,
primarily due to a significant reduction in population sizes. Overexploitation will
not result in species extinction but can profoundly impact the size of the gene pool,
equivalent to a population bottleneck (Allendorf et al. 2022). For instance, selective
logging of a large part of a tree population while leaving a small number of undesir-
ably shaped individuals as seed trees can have a lasting negative effect on the growth
of future tree generations (Ledig 1992). Research has also shown that while thin-
ning of stands as a silvicultural management practice may not affect the genetic
diversity of the main target species, it can, however, have a detrimental effect on the
associated secondary tree species when their population size is strongly reduced
(El-Kassaby and Benowicz 2000).

Another effect of overexploitation can be an increase in hybridization rates
among species that would not have occurred in undisturbed habitats. For example,
extensive hybridization between Picea rubens and P. mariana has been observed as
a consequence of extensive logging and wildfires in the maritime provinces of
Canada (Ledig 1992). In a situation where P. rubens was heavily harvested and
simultaneously affected by fires, P. mariana was not overharvested and less affected
by forest fires due to its more humid habitat; as a consequence, P. mariana outnum-
bered and was able to fertilize P. rubens, resulting in large-scale establishment of
hybrid offspring in the clearcut areas. This hybridization does not occur to the same
extent in undisturbed habitats, and hybrids do not establish as easily, since they tend
to grow slower and be more susceptible to pests. A similar example has been
reported with regard to Pinus palustris and P. taeda (Namkoong 1966). Climate
change may have a similar effect in certain situations (e.g., Lind-Riehl and Gailing
2017). Hybridization can threaten the genetic integrity of a species, but on the other
hand can also provide the genetic variation necessary to adapt to new climate condi-
tions (Brauer et al. 2023; see also Chap. 5).

Translocation

The anthropogenic translocation of forest plants, animals, and microorganisms has
heavily affected the appearance and composition of current forests. Unfortunately,
the unintentional introduction of novel pests and diseases can significantly impact
the genetic diversity and even survival of many species, and of forest tree species in
particular. Among the most severe such cases is the introduction of the chestnut
blight pathogen (Cryphonectria parasitica) to eastern North America, which has
basically eradicated Castanea dentata as one of the main tree species from the for-
ests in this geographic region (Anagnostakis 1988). Other examples are the spread
of Dutch elm disease (Ophiostoma novo-ulmi) to Europe and North America
(Brasier 2000), the appearance of the gypsy moth in eastern North America
(Liebhold et al. 1992), and more recently the introduction of the ash dieback fungus
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(Hymenoscyphus fraxineus) to Europe (McMullan et al. 2018) and the emerald ash
borer (Agrilus planipennis) to North America (Herms and McCullough 2014).
These introductions have decimated the population sizes of the affected tree species,
causing massive reductions in extant genetic diversity. In combination with frag-
mentation and climate change, these factors pose further threats to long-term spe-
cies survival. Efforts should be undertaken to prevent such intercontinental spreading
of pests and pathogens by applying strict phytosanitary measures.

The introduction of non-native tree species as an alternative to autochthonous
trees for wood production in the face of climate change is a hotly debated topic.
Introduced species might become invasive and outcompete native ones with large-
scale and long-lasting negative effects on forest ecosystems. Therefore, careful
evaluation of species performance is necessary before such introductions are recom-
mended (Brundu et al. 2020). For example, Robinia pseudoacacia was introduced
to Europe from North America in the seventeenth century and has since invaded
many Central European ecosystems, becoming a typical element of the landscape.
Though its effects on native forests have mostly been described as negative, this
species currently represents an important component of forests of Southeastern
Europe, where its eradication has become impossible (and no longer even desirable)
for forest managers. The European populations spread out from a small number of
founding trees possessing a restricted share of the genetic diversity present in
R. pseudoacacia’s native range. Interestingly, the seeds of these most successful
trees were shown to have significantly higher germination rates than the average
native American populations, as well as low pre-adaptation germination require-
ments (Bouteiller et al. 2021); this provides evidence that anthropogenic selection
has favored these provenances without their invasive potential being taken into
account.

The translocation of native forest plants as part of reforestation and forest man-
agement efforts likewise impacts genetic diversity. Planting can change local pat-
terns of variation, modify the mating system, and impact natural populations in the
vicinity through pollen flow and seed migration by reducing local adaptation (out-
breeding depression; Frankham et al. 2011). Since often no records are kept on
which planting material has been used in which locations, it is difficult to assess
associated negative and positive impacts on local performance and diversity pat-
terns. In general, however, the available examples show that effects on local popula-
tions seem to be limited or even beneficial (Leféevre 2004). Complementary planting
in small populations of endangered species can actually be seen as a measure of
assisted gene flow or genetic rescue, since it provides demographic support (census
size) and the introduced migrants reduce the effects of inbreeding depression in the
respective population fragment (Allendorf et al. 2022). However, it is essential for
this practice to be carried out with proper forest reproductive material (FRM) con-
taining sufficient genetic diversity to avoid negative effects on extant populations:
Excessive planting of a rare species to increase its distribution under the neglect of
the native gene pool and the genetic diversity of the reproductive material used can
result in further erosion of genetic diversity and eventual loss of the entire popula-
tion. An example is provided by Lefevre (2004) for Sorbus domestica when plants
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with low genetic diversity are planted on a large scale, outnumbering the native gene
pool (genetic swamping; Garcia-Ramos and Kirkpatrick 1997; Lenormand 2002).
Awareness for this issue is increasing and it is becoming common practice to check
the genetic diversity of rare species as well as potential source populations before
large-scale planting is conducted (e.g., for Sorbus torminalis, Kavaliauskas et al.
2021; or Acer platanoides, Lazic et al. 2022). In situations where an endangered
population needs to be conserved, special attention should be paid to the influx of
unwanted immigrant pollen or seeds (Unger et al. 2016).

Widespread plantation failures, poor performance, bole shape of ill-adapted for-
est tree provenances, and loss of productivity resulting from the use of low-quality
planting material led to higher standards being applied by forest managers in the
sourcing and employment of FRM. In the European Union, a directive on baselines
for the collection of and trade in FRM is in place that is aligned with the respective
OECD standards (OECD 2023). Extant guidelines on FRM translocation are mostly
based on the assumption that “local is best.” All FRM needs to be labeled properly
from seed to plant, and a database of all registered FRM sources has been created
(FOREMATIS). The “local is best” paradigm is presently being challenged by the
advent of climate change. One generally accepted way to help forests adapt to cli-
mate change is the development of assisted migration (or assisted gene flow; Aitken
and Whitlock 2013) by planting putatively better-adapted FRM (i.e., provenances
from portions of the species’ range that are closer to future climatic predictions for
the target site) in addition to natural regeneration. In this way, forests should have
the possibility to adapt through natural selection in the long term. Modeling
approaches regarding optimal provenance selection are already available and
steadily being improved to include various site conditions (Poupon et al. 2021). A
more in-depth review of the concept of assisted migration is provided in Chap. 14.

Artificial Regeneration

Artificial regeneration is considered beneficial to local genetic diversity if the
employed FRM is of proper origin and derived from a sufficiently high number of
mother trees. In contrast to natural regeneration, planted trees are often unrelated.
Plantations can thus feature high genetic diversity, especially when seeds from a
large number of unrelated clones are used (Lefevre 2004). On the other hand, natu-
ral regeneration can potentially capture new genetic variation from a larger cohort
of pollen donors (Raja et al. 1998). Despite artificial regeneration being challenging
for several reasons (see the review on oak artificial regeneration by Dey et al. 2008),
it becomes necessary when natural regeneration is too slow or does not meet the
required objectives; for instance, after forest decline in large areas. Therefore, both
management systems should be practiced and complement each other with the aim
of enhancing genetic diversity and fitness (see also preceding section). Importantly,
Lefévre (2004) showed that the majority of economically important tree species
harbor moderate to high levels of genetic diversity so that human selection and
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breeding do not significantly reduce their genetic diversity, with corresponding
effects mostly detectable only in a few genomic regions.

In addition to the selection of FRM sources, cultivation in nurseries can have
different effects on the genetic diversity of the resulting plant lots. For instance,
common practices such as seed sorting for efficient container plant production and
thinning out surplus (i.e., smaller) seedlings after seeding numerous seeds per con-
tainer have effects equivalent to directional selection for large-sized seedlings, a
trait that does not correlate with improved performance in later life stages (Edwards
and El-Kassaby 1996). Moreover, seed lots have differing requirements for stratifi-
cation and substrate conditions, which are mostly not taken into account in nurser-
ies. This becomes particularly problematic when seedling selection is based on
performance in the nursery environment rather than at the planting site. Finally,
additional challenges are posed by the methods of fertilization, mycorrhization,
growth sorting, cold storage, and undercutting of nursery stock and their effects on
later performance of trees and their progenies (see the review by Himanen et al.
2021). Direct sowing should be considered an option for artificial regeneration,
since it appears to maintain within-seed-source diversity better than planting and
because the higher selection intensity during seed germination and seedling estab-
lishment results in the establishment of the seedlings best adapted to the respective
site (Lefevre 2004).

How Can Genetic Diversity and Population Connectivity
Be Measured Using Molecular Tools?

The field of conservation genetics was established to detect and monitor anthropo-
genic influences on natural populations and develop conservation schemes encom-
passing genetic principles (Holderegger et al. 2019). As discussed in the previous
paragraphs, connectivity is an essential feature affecting the genetic makeup and
dynamics of populations in fragmented habitats. The metapopulation concept intro-
duced by Levins (1970) has become a valuable model for conservation genetics
(e.g., Wade 2016). A metapopulation is a group of populations of different sizes
occupying similar habitat patches within a specific region that are connected via the
exchange of migrants. The different patches vary in population size and migrant
exchange and are thus affected to differing degrees by drift and inbreeding, with the
possibility of local extinction and recurrent natural recolonization of patches
(Allendorf et al. 2022; Fig. 4.1). Bigger fragments harboring larger populations, as
well as subpopulations located closer to each other, will exchange more migrants.
Migration between habitat patches is particularly important because it counteracts
population decline and helps to recolonize patches in which individual species have
gone extinct. In conservation genetics, the estimation of gene dispersal distances
and the rate of exchange among patches is therefore of particular interest, as these
factors are decisive for overall (meta-)population survival.

Plant research places a key focus on current rates of pollen and seed exchange to
obtain a reliable measure of population connectivity. To achieve this goal, data on
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gene dispersal processes at a local, regional, and species-range scale is required
(Kremer et al. 2012). Every species has different dispersal capabilities, and a broad
range of analytical methods to assess gene flow has been developed (Manel et al.
2005; Smouse and Sork 2004; Burczyk et al. 2006; Robledo-Arnuncio 2012). In
general, the available methods can be classified as direct or indirect. Indirect meth-
ods offer information on historic, intrinsic dispersal capabilities of a species, both at
the intra- and interpopulation level. Indirect approaches to assessing historical gene
flow within continuous populations employ the principle that the spatial genetic
structure (SGS) displayed by neutral genetic markers is essentially caused by local
drift, the effect of which is balanced out by gene dispersal. Under this isolation by
distance model, the decay of genetic relatedness with distance has been shown to be
inversely proportional to the effective population density (i.e., a measure of popula-
tion density based on N, as defined in Vekemans and Hardy 2004). When a reliable
estimate of the latter is available, methods to estimate gene dispersal distance from
patterns of SGS exist (Vekemans and Hardy 2004; Rousset 2000).

Despite the importance of non-time-specific estimation methods, most present-
day research aims to assess the contemporary gene flow among populations.
Estimates of current levels of pollen and seed exchange between populations deliver
valuable information for ecological monitoring and conservation management in a
wide range of scenarios (Lenormand 2002). These include genetic and demographic
connectivity after landscape fragmentation, containment of allochthonous (or even
genetically modified) populations, or potentially adaptive long-distance gene flow
across heterogeneous habitats under climate change (Robledo-Arnuncio 2012). A
plant-specific maximum-likelihood approach to jointly estimating contemporary
pollen and seed exchange rates was established by Robledo-Arnuncio (2012) and
developed further by Unger et al. (2016). This method employs genetic markers that
are biparentally inherited (nuclear microsatellite markers) and sampled from the
putative target and source populations sequentially, i.e., before and after a reference
dispersal event. A major limitation is that the methodology cannot be applied to spe-
cies with a continuous distribution, including those with long-range dispersal—
which includes a majority of economically and ecologically important tree species.

Alternatively, patterns of current gene flow can be estimated “directly” using
genetic fingerprint and parentage analyses to assign seedlings to their parent trees
and thus infer species-specific pollen and seed dispersal curves (Oddou-Muratorio
and Klein 2008; Oddou-Muratorio et al. 2010). Although such results are locally
derived, very detailed information about the reproductive system and reproductive
biology of a species can be obtained. In plant populations, parentage analysis con-
sists of genotyping a sample of dispersed seeds or established seedlings as well as
all reproductive individuals within a circumscribed area using a set of shared poly-
morphic markers (see Chap. 5 for a more detailed description) to determine the
parents of each seedling (Meagher 1986). To distinguish between male and female
parentage of seeds and seedlings, maternally inherited tissues collected on dispersed
seeds can be genotyped (Jones et al. 2005; Jordano et al. 2007). When already estab-
lished seedlings are studied, the average effective pollen/seed dispersal distance can
be directly estimated from parent—offspring genotype data by model fitting, such as
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the neighborhood model (Burczyk et al. 2006). These approaches also enable the
detection of ecological factors that are likely to influence patterns of gene flow and
relatedness, e.g., parental phenotypic traits (Gonzédlez-Martinez et al. 2006), seed
disperser behavior (Jordano et al. 2007), or spatial environmental heterogeneity
(Jones et al. 2005). The most advanced approaches additionally allow estimation of
selection gradients and detection of fitness-related traits that enhance the reproduc-
tive and dispersal success of parental individuals (Chybicki 2018, 2023).

Clustering and assignment methods have also been used to estimate dispersal
between population fragments (Berry et al. 2004; Gagnaire et al. 2015); these have
mostly been applied to animal populations but are likewise useful in plant studies
(e.g., Bizoux et al. 2009; Kassa et al. 2017). In these approaches, a set of reference
populations is defined a priori and individuals are assigned to their respective popu-
lation of origin based on multilocus genotypes. In this way, immigrants can be iden-
tified when the sampling location and genetic group of origin do not match. These
methods also allow the offspring of immigrants and later-generation descendants to
be identified (Wilson and Rannala 2003). Rates and direction of dispersal among the
studied populations can thus be estimated. Moreover, it is possible to detect natural
or anthropogenic barriers as well as other factors with an impact on gene flow (e.g.,
wind direction and migration corridors). The results of these investigations can
inform conservation strategies to restore connectivity (Balkenhol et al. 2015). The
research field focused on these aspects by combining population genetics and land-
scape ecology has been termed “landscape genetics” see also Chap. 5.

There is a wide variety of measures of genetic diversity (see also Chaps. 5 and 8)
the most useful for genetic monitoring are allelic diversity (or allelic richness when
comparing different sample sizes) and expected heterozygosity. The latter is most
sensitive to reductions in N, and thus the most suitable for detecting population
decline (Allendorf et al. 2022). The estimation of N, is particularly important to
glean information on the genetic status of a population; for example, a population’s
census size (N, the total number of individuals in a population) can be high even
though N, is low (e.g., when few parents have sired a large part of the population).
The effective population size N, was introduced by Sewall Wright (1931, 1933) and
can be defined as “the size of an ideal population that would experience the same
magnitude of genetic drift and inbreeding as the studied population”; in other
words, it informs us about the “true” size of a population in terms of genetic diver-
sity (Allendorf et al. 2022). An in-depth review of existing methods to infer N,
based on demographic parameters and genetic data was performed by Wang et al.
(2016). For practical applications, thresholds have been suggested (see below) for
how large N, and N, should be to enable a population to survive in the long term.
Nevertheless, N, estimation is particularly difficult and generally approximate for
large populations of forest trees with a continuous distribution (Santos-del-Blanco
et al. 2022). Additional limitations of this measure include the impossibility to know
whether an estimated N, refers to a single population from which samples are taken
or to the metapopulation it is a part of, as well as the time point reflected by the
measurement (Wang et al. 2016).
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Most existing studies on genetic diversity and gene flow have been performed
using neutral nuclear microsatellite markers since they are straightforward to score
and the obtained results are repeatable and usually show a high number of alleles
per studied locus. Technological progress in the development of molecular methods
has been rapid thanks to next-generation sequencing, which allows the study of
thousands to millions of single nucleotide polymorphisms (SNPs) for any given
species (Ellegren 2014). At present, the use of microsatellite markers for parentage
analyses is rapidly declining in favor of next-generation sequencing markers—
mostly SNPs (Flanagan and Jones 2018). Major challenges arising in the context of
next-generation markers include (i) whether the existing software products can
handle much greater numbers of markers, (ii) whether the methods can deal with the
higher degree of uncertainty of genotype estimation at single loci (e.g., genotype
likelihoods), and (iii) whether additional sources of error should be considered
(Flanagan and Jones 2018). Moreover, with the steadily increasing number of avail-
able reference genomes, whole-genome resequencing of large numbers of individu-
als is becoming feasible (and affordable) for an increasing number of laboratories.
Most of the methods listed above have already been extended to allow the use of
SNP data to study connectivity and gene flow as well as considering genotyping
errors and rare allele frequencies (e.g., Korneliussen et al. 2014; Chybicki 2018,
2023; Heena et al. 2023).

Although genotyping and sequencing technologies are advancing quickly, moni-
toring the genetic diversity of one or multiple species remains very resource-
intensive. New technologies that allow biological information to be collected for a
large number of individuals simultaneously are emerging as a possible solution to
this limitation. Remote sensing via imaging spectrometry—i.e., detection of the
physical features of an area from its reflected and emitted radiation—provides
extensive biochemical information on natural ecosystems including forests, and is
increasingly publicly available (see e.g. www.geo.uzh.ch/en/units/rs.htmland;
www.genesinspace.org). This data can support an indirect assessment of within-
species genetic diversity for many tree species (Cavender-Bares et al. 2022; Jung
et al. 2021; Wang and Gamon 2019). Indicators of genetic diversity based on esti-
mated census sizes of reproductively mature individuals in a population (see below)
do not require genetic data for estimation. It is therefore potentially feasible to
quantify species abundance and characterize populations using remote sensing data
from satellite or aircraft images, and to integrate this information with existing
field-based knowledge on habitat type and extent. The superposition of spectral
information and environmental data can thus provide proxies of genetic variation
and identify areas of high or low genetic diversity, as shown by an increasing num-
ber of studies (Kivinen et al. 2020; Madritch et al. 2014; D’Odorico et al. 2023;
Yamasaki et al. 2017). Despite several technical limitations that still need to be
overcome (e.g., Jung et al. 2021; Khanal et al. 2020; Tran et al. 2022), remote sens-
ing data represents a promising new approach for the future of genetic monitoring.
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How Much Genetic Diversity Is Needed?

Genetic monitoring can detect long-term changes in genetic diversity. Both in situ
and ex situ approaches to conserving genetic diversity have been suggested and
implemented, at least for some of the main forest tree species (e.g., Hoban and
Schlarbaum 2014; Lindenmayer and Laurance 2017; Mounce et al. 2017). These
concepts are presented and discussed in Chap. 11, and will not be elaborated on any
further here. However, the number of populations conserved in either fashion is a
good indicator of the conservation status of a species of interest (Hoban et al. 2020).

Most data accumulated so far indicates only rare losses of genetic diversity
among the primary tree species in temperate forest ecosystems, mostly due to their
large population sizes, frequent wind-pollination, and predominately outcrossing
mating systems. Generally, tropical tree species exhibit more evident population
structure and enhanced genetic differentiation between populations of the same spe-
cies than temperate tree species (Dick et al. 2008). This difference is likely caused
by low but significant rates of self-fertilization and biparental inbreeding in tropical
species, probably due to lower population densities and predominant pollination by
insects (Dick et al. 2008). Comparatively little is known in this regard about second-
ary (i.e., economically less important) tree species, and even less about the vast
number of other forest-dwelling organisms. While relatively high levels of genetic
diversity are still found even in rare tree species within fragmented habitats, these
results are probably strongly biased: Most studies to date have analyzed adult trees,
which do not realistically reflect the effects of fragmentation and anthropogenic
impact over the last 100 years but rather preceding and historic patterns of genetic
diversity. This phenomenon has been termed the “extinction debt” (Aguilar et al.
2008; Vranckx et al. 2012) and describes the time lag between population decline
and subsequent measurable changes in genetic diversity; there is increasing evi-
dence showing that offspring generations generally have lower genetic diversity
(Aguilar et al. 2018; see also above under fragmentation impacts).

But the question remains how much genetic diversity is needed for a population
to survive, or for conservation efforts to be necessary or meaningful. Are small
populations doomed because all individuals will be the result of inbreeding after a
few generations? These questions cannot be easily answered. There exist examples
of populations with very low diversity but no apparent effects of inbreeding depres-
sion (Allendorf et al. 2022). The importance of inbreeding depression for the fate of
populations has been debated (e.g., Nonaka et al. 2019), but the accumulated evi-
dence clearly indicates that inbreeding depression needs to be considered in the
context of the persistence of populations (Frankham et al. 2011; Spurgin and Gage
2019; Allendorf et al. 2022). It is therefore safe to say that small populations will
generally have a lower ability to adapt to changing environments or novel pests and
be more strongly affected by stochastic effects (drift). Genetic data can provide
precise information about the state of a given population: Is its diversity lower than
that of other populations of the same species? Is the population connected to other
populations or is it relatively isolated?
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As a general guideline for management decisions, the so-called 50/500 rule
(Franklin 1980) postulates that N, should not fall below 50 individuals in the short
term and 500 individuals in the long term to prevent erosion of genetic diversity.
Later studies have suggested changing these thresholds to 100 and 1000 individuals,
respectively (Frankham et al. 2014). In theory, the long-term adaptability of a popu-
lation remains stable if less than 0.1 of its heterozygosity is lost per generation
(Frankham et al. 2010). This preservation of diversity per generation is estimated to
be achieved with approximately 1000 randomly mating individuals with a balanced
sex ratio (i.e., N, of 1000). In nature, N, is around 10% of the N, of a population on
average; this means that approximately 10,000 individuals would be needed in the
long term for a population to remain stable under the influence of factors that erode
genetic diversity (Frankham et al. 2014). Such general rules have been widely criti-
cized as being too approximative and far from reality (e.g., Fady and Bozzano 2021;
Franklin et al. 2014), and because they do not take species-specific assumptions and
constraints into consideration (Flather et al. 2011). Most likely, a more meaningful
approach involves avoiding such thresholds as targets but instead considering them
as indicators of potential risk of decline (Allendorf et al. 2022). In this way, N,
approximated on the basis of N, can be applied as a suitable pragmatic indicator of
“genetic health state” for any species, including forest trees. Such indicators are
necessary for decision-making and the prioritization of conservation efforts, since
the alternative is to make entirely unscientifically based decisions at the political
and bureaucratic levels (Brook et al. 2011).

Practical indicators for monitoring the status and trend of genetic diversity within
species have been developed under the Post-2020 Global Biodiversity Framework
(GBF; e.g., Hoban et al. 2023a, b) of the Convention on Biological Diversity’s
(CBD, i.e., the main legally binding agreement with respect to biodiversity conser-
vation; see also next section). These indicators are partly based on the abovemen-
tioned relationships between N, and N, and were ultimately recommended by the
CBD at the Kunming-Montreal Summit in 2022. The purpose of Indicator 1 (frac-
tion of populations with N, > 500 or N, > 5000) is to provide a baseline for conserv-
ing sufficient within-population diversity in case of rapidly changing environmental
conditions. By contrast, Indicator 2 (fraction of populations still existing) measures
the temporal trends in among-population diversity with a view to providing diverse
options for the future adaptability of the species. Indicator 3 is a binary value
describing whether the species has been monitored by means of molecular markers
or any DNA data that could guide future conservation actions. These three indica-
tors are illustrated for a hypothetical species in Fig. 4.2. While Indicators 1 and 3 are
based on a present state (i.e., only current data is required), Indicator 2 is more chal-
lenging because it requires historic population data and monitoring efforts. Although
such data is presumably available for some of the commercially important tree spe-
cies (e.g., from national forest inventories), the indicator will likely be difficult to
assess for rare species with scattered distributions.
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O M= 500 or N> 5000

O N, <500 or N, <5000

Lost population

-

Population analyzed with DMNA data

Indicator2 | Indicator3

3/5=0.6 5/6=0.83  Yes=l

Fig. 4.2 Tllustrative and simplified example of the application of three indicators suggested for
monitoring genetic diversity within a hypothetical species. The indicators relate to goals and tar-
gets defined by the CBD under the Post-2020 Global Biodiversity Framework: the fraction of
populations with Ne > 500 or Nc¢ > 5000 (Indicator 1), the fraction of populations still existing
(Indicator 2), and the presence of populations for which genetic data exists (Indicator 3). The black
outline represents the species distribution, and the circles inside represent individual populations

The State of Genetic Diversity at a Global Scale, and Initiatives
to Conserve It

The available data on anthropogenic damage to forests and other ecosystems offers
a desolating perspective. Hoban et al. (2023a, b) provided an overview of the loss of
genetic diversity in the recent past by reporting DNA-based studies documenting
high genetic diversity losses over the past 50—-100 years, particularly in island spe-
cies (28% loss), and harvested fish species (14% loss) (Pinsky and Palumbi 2014;
Leigh et al. 2019). Over the past few decades, the genetic diversity of International
Union for Conservation of Nature (IUCN) Threatened species has declined by
9-33% on average (estimates are based on a mathematical relationship between
population loss and genetic diversity loss in several plant and animal species;
Exposito-Alonso et al. 2022). Hoban et al. (2021) predicted that, based on popula-
tion genetic theory and the Living Planet Index (www.livingplanetindex.org), popu-
lations may ultimately lose an average of 19 to 66% of their genetic (allelic) diversity
within the next few decades without interventions to stop and reverse species’ popu-
lation declines. More specific numbers for forest ecosystems are hitherto not avail-
able. The most striking example of forest habitat loss is South America. Most forest
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ecosystems in this region are rapidly declining, and the predictions mentioned
above are therefore presumably valid for forest species as well. Projections by
Frankham (2022) have shown that a loss of “only” 10% of genetic diversity within
a given species in the long term (more than 100 years) will already give rise to
increased levels of inbreeding that can severely debilitate that species’ evolutionary
potential to adapt to a changing environment. Policymakers are urged to take mea-
sures accordingly.

The CBD marked a historic milestone as the world’s first international treaty
uniting nearly all nations in a common mission to preserve biodiversity and promote
sustainable utilization and equitable distribution of the benefits it generates. Since
entering into force in 1993, the CBD has developed multiple frameworks; prepara-
tions are currently underway for the Post-2020 GBF (CBD 2022). The Post-2020
GBF is expected to include four high-level goals for 2050 related to the state of
nature resulting from conservation, nature’s contribution to people and its sustain-
able use, shared benefits arising from biodiversity, and means of implementation
and resource mobilization, along with 22 action targets for changes in human soci-
ety and activities required by 2030 to achieve those goals (Hoban et al. 2023a, b).
The GBF is currently still being negotiated and must be agreed upon by all parties;
it therefore reflects scientific input, political negotiation, perceived feasibility, and
compromise. The CBD encourages countries to develop strategies and action plans
to conserve and sustainably manage their forest biodiversity.

The signatory states have committed to monitoring and reporting on biodiversity
development in their countries. In the original CBD, genetic resources were men-
tioned, but not explicitly with regard to the conservation of genetic diversity of wild
animals and plants. In the new Post-2020 GBF development, this topic is to be
extended to include wild animals, plants, and fungi (Laikre et al., 2020). Defining
implementable indicators is a prerequisite for countries to report on their respective
status, but discussions on this matter are still in progress (Hoban et al. 2023a, b).
Frankham (2022) describes the process and recommends that goals, milestones, and
targets in the GBF should mention as core elements: (i) the maintenance of suffi-
ciently large populations (rather than permitting an “acceptable loss of genetic
diversity”), (ii) sufficient and appropriate genetic exchange among populations
(connectivity) and (iii) active monitoring and management of genetic diversity, as
well as (iv) no loss of populations. Respective indicators have been described in the
previous section. Furthermore, such indicators have been recommended and are
also required for reporting under other biodiversity conservation schemes. A more
extensive treatment of the topic of biodiversity indicators is presented in Chap. 8.

In connection to the CBD, the European Commission has launched the EU Forest
and Biodiversity Strategy 2030 (European Commission 2020), a comprehensive,
ambitious, and long-term plan to protect nature and reverse the degradation of eco-
systems. The strategy aims to place Europe’s biodiversity on a path to recovery by
2030 and encompasses specific actions and commitments. It is the proposal for the
EU’s contribution to the upcoming international negotiations on the Post-2020 GBF
and a core element of the European Green Deal (EC 2019). In particular, it calls for
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the establishment of ecological corridors to prevent genetic isolation, allow for spe-
cies migration, and maintain and enhance healthy ecosystems.

Another important initiative primarily concerned with the genetic diversity of
forest trees and other woody species that are of realized or potential economic,
environmental, scientific, or societal value is the FAO scheme on forest genetic
resources. Work on forest genetic resources at FAO was initiated in the 1950s, and
since then FAO has supported countries in their efforts to improve the management
of forest genetic resources and promoted regional and international cooperation.
Within FAO, the Commission on Genetic Resources for Food and Agriculture
requested countries to provide input to and guide the preparation of a report on “The
State of the World’s Forest Genetic Resources” (FAO 2014; a second updated report
is currently in preparation). Furthermore, FAO agreed on strategic priorities which
the FAO Conference adopted in June 2013 as the Global Plan of Action for the
Conservation, Sustainable Use, and Development of Forest Genetic Resources. The
results of the 2014 report show that studies have thus far described genetic param-
eters for less than 1 percent of tree species and that no data is available for many
countries. Although the Global Plan of Action recognizes that both the number of
(molecular genetic) studies and the number of species studied have increased sig-
nificantly over the past 20 years, it regrets that little of the accumulating knowledge
has direct application in management, improvement, or conservation. The report
shows that most research on forest genetic resources has been concentrated on tem-
perate conifers, eucalypts, several acacia species, teak, and a few other broadly
adapted, widely planted, and rapidly growing species—mostly with the aim of
describing genetic resources for breeding rather than for conservation. Genomic or
marker-assisted selection is close to being realized, but major gaps still exist in
phenotyping and data management. The report also states that many of the species
identified as priorities, especially for local use, have received little or no research
attention, indicating a need to associate funding with priority-setting practices. An
Intergovernmental Technical Working Group on Forest Genetic Resources ITWG-
FGR) was also established within FAO to address issues relevant to the conservation
and sustainable use of forest genetic resources as well as advising and making rec-
ommendations concerning the report preparation process (see also Chap. 15).

In Europe, a specific network on FGR conservation and use is in place.
EUFORGEN—the European Forest Genetic Resources Programme—is an interna-
tional cooperation program that promotes the conservation and sustainable use of
forest genetic resources as an integral part of sustainable forest management. It was
established in 1994 as a result of a resolution adopted in 1990 by the first Ministerial
Conference of the Forest Europe process. Experts from member countries come
together within EUFORGEN to exchange information and experience, analyze pol-
icies and practice, and develop science-based strategies, tools, and methods to
improve the management of FGR.

The International Union for Conservation of Nature (IUCN) is the main global
organization providing expertise, assessments, and guidelines for conservation
efforts. It publishes the IUCN Red List of Threatened Species, which includes infor-
mation on the conservation status of various groups of organisms (mainly plant and
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animal species, including many forest species). The Red List is a key data source
that also informs CBD reporting, and the respective data could be used as a baseline
for genetic monitoring. The Red List also shows that we still lack data on biodiver-
sity: Only 6% and 15% of all known plant and animal species, respectively, have
been assessed for their conservation status. The available data show, for example,
that an alarming 34% of all conifer species are threatened by extinction and listed in
the IUCN Red List (IUCN 2019).

The Living Planet Index and Living Planet Report are published by the World
Wildlife Fund (WWF) biannually (Almond et al. 2022), reporting trends in biodi-
versity for animal species on a global scale. The 2022 edition shows a 69% global
decline in the relative abundance of monitored wildlife populations between 1970
and 2018. Latin America exhibits the greatest regional decline in average popula-
tion abundance (94%), while freshwater species populations have seen the greatest
overall global decline (83%). Data for the report are partially provided by [IUCN and
the Intergovernmental Panel on Climate Change (IPCC).

The United Nations Collaborative Program on Reducing Emissions from
Deforestation and Forest Degradation (UN-REDD) supports countries in their
efforts to reduce emissions from deforestation and forest degradation while promot-
ing sustainable forest management. It is the UN reference knowledge and advisory
platform on forest-related solutions to the climate crisis. UN-REDD promotes
approaches that ensure the environmental integrity of carbon emissions reductions
while supporting non-carbon benefits—from safeguarding biodiversity to support-
ing local livelihoods and promoting the rights of indigenous peoples. Genetic diver-
sity preservation is a part of the broader conservation objectives of this program
(UN-REDD Program, www.un-redd.org).

The initiatives mentioned above, along with many others, contribute to the global
effort to protect and conserve the genetic diversity of forest ecosystems, acknowl-
edging the importance of biodiversity for ecosystem resilience, sustainability, and
human well-being.

Active Participation of Conservation Geneticists in Policy
Development Is Needed

In this chapter, we presented an overview of the knowledge on and status of forest
genetic diversity, highlighting the anthropogenic influences on it and the associated
policy initiatives to conserve it. Policy developments, implementations, and conser-
vation decisions need to be based on scientific research. To conserve and improve
biological and genetic diversity, scientists should actively work to suggest and
improve related policy development in close cooperation with policymakers. This
can be a difficult process for both sides (Hoban et al. 2023a, b). Typically, foresters
and scientists are not involved in political processes, while policymakers are usually
not familiar with concepts specific to the field of research. The integration of these
two spheres of action is very time-consuming and demanding, yet still frequently
does not deliver the output needed by scientists (e.g., peer-reviewed publications).
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Nevertheless, steady interaction with decision-makers is the only path toward sus-
tainable and long-term stabilization and conservation of genetic diversity and eco-
system functioning. Research questions often do not directly address the needs of
forest or conservation managers (Taylor and Dizon 1999; Geburek and Konrad
2008; Holderegger and Segelbacher 2016). This is currently changing as genetic
diversity and connectivity are becoming increasingly recognized as important parts
of successful conservation and restoration strategies (Jalonen et al. 2018; Aguilar
et al. 2019). Nevertheless, interactions and dialogue need to be intensified to work
toward the common goal of sustainable conservation of forest biodiversity. In addi-
tion, the general public constantly needs to be informed on initiatives and principles
to generate the required attention and (financial) support.

Box 4.2 Providing reproductive material for sustainable forest and landscape
restoration (FLR)

The purpose of forest and landscape restoration (FLR) is to restore ecological

processes at the landscape scale to maintain biodiversity and ecosystem func-

tions and enhance resilience to environmental change. FLR has become the
aim of a range of multi-million-hectare commitments in many parts of the

world to mitigate climate change effects and halt the loss of biodiversity (e.g.,

European Green Deal; EC 2019). To achieve these ambitious goals, billions of

seedlings are needed, yet the provision of seeds has often received little atten-

tion in the planning of restoration projects, and Jalonen et al. (2018) reported
widespread use of unsuitable reproductive material for FLR. As explained in
this chapter, reproductive material to be used in FLR (i.e. seed, seedlings, or
vegetatively produced propagules) needs to be locally adapted and provide
sufficient genetic diversity to build stable, adaptable, disease-resistant, and
self-reliant forests. However, due to a lack of awareness in restoration prac-
tices, FLR projects often use seeds that are ill-adapted to the local conditions
or offer insufficient genetic variation, for example, when they are collected
from a small pool of mother trees (Broadhurst 2013; Liu et al. 2008; Navascués
and Emerson 2007; Thomas et al. 2014). On the other hand, habitat loss, frag-
mentation of source populations, and climate change have a joint negative
influence on the genetic diversity of seed lots and their actual availability

(Aguilar et al. 2019). To counteract this development, Jalonen et al. (2018)

recommend the following policy interventions:

1. Assembling a national assessment of seed supply and demand for meeting
FLR targets. Identification of gaps in seed supply and development of
strategies for sustainable sourcing should occur beyond specific project
demand. Seed supply assessments should consider quantity, genetic

(continued)
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quality (diversity), and geographic origin. This strategy will be most effi-
cient if applied across national borders.

2. Adjusting FLR targets and funding cycles. Building up long-term seed
supplies goes beyond the average FLR project duration. FLR projects
should include investments in seed availability and access to quality seeds
to avoid unfit selection and deployment of low-quality plants. In this con-
text, funding schemes and projects should allow long enough durations to
avoid unsuccessful FLR efforts.

3. Exchanging of knowledge and experiences regarding seed selection and
supply options. The unprecedented amounts of seed and plant material
currently needed to meet FLR targets require knowledge sharing among
actors to identify functioning approaches for different species and socio-
economic contexts, as well as which actors are most efficient at which
stage of the process. Multi-stakeholder platforms can efficiently bring
together these different actors (e.g., seed suppliers, restoration practitio-
ners, and policymakers). Such platforms already exist in some countries
and could be expanded and developed further (Melo et al. 2013).

4. Facilitating seed exchange across landscapes. In many cases, seeds for
FLR are collected from origins as close as possible to the deployment site,
often at the cost of genetic diversity and quality of the seeds. This approach
needs to be shifted toward genetically more viable seed sources.
Documentation of employed seed sources should also become common
practice to allow the performance of different seed origins to be compared.
Use of multiple different seed sources and stimulation of natural gene flow
by restoring landscape connectivity is also recommended (e.g., Sgro
etal. 2011).

5. Establishing regulations on seed quality and strengthening capacities for
compliance. Other than in regular forestry, where regulations on the col-
lection and marketing of forest reproductive material exist (e.g., the OECD
schemes on forest reproductive material or the EU Directive 105/1999/EU
on Forest Reproductive Material in the European Union), this is not the
case in many countries where FLR is implemented. Accreditation of seed
sources and nurseries is an important step toward ensuring the availability
of high-quality plant material from known sources. It should become com-
mon practice to only use seeds from accredited sources for subsidized FLR
projects.
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Abstract

The long-term survival of populations depends on genetic variation in traits
related to survival and reproductive fitness. The polygenic architecture of traits is
thought to facilitate adaptive shifts, but whether tree species will be able to adapt
to the currently rapidly changing climatic conditions remains a subject of debate.
On the other hand, trees are characterized by considerable phenotypic plasticity
that allows them to grow under different or variable environmental conditions
caused by global climate change. Phenotypic plasticity may thus help popula-
tions survive by “buying time” until genetic adaptation to the new environmental
conditions occurs. One of the most important mechanisms underlying pheno-
typic plasticity is epigenetic regulation—stable altered gene expression without
changes to the DNA sequence. Efficient dispersal mechanisms and the high
fecundity of forest trees can promote genetic connectivity and facilitate the
spread of adaptive genes and the colonization of new habitats. However, the col-
onization of new areas in response to a shift in suitable habitats, for example by
northward migration, requires the dispersal of diploid sporophytes by seeds or
fruits. Natural dispersion of tree species is therefore likely largely lagging behind
the expansion of potentially suitable habitats dependent on the genetic system of
species.
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Population Genetics and Evolutionary Factors

Biological evolution is estimated to have given rise to approximately 73,000 tree
species on Earth (Gatti et al. 2022). The vast diversity of tree species that are mor-
phologically distinct and often adapted to different environmental conditions reflects
adaptive evolution. Evolution causes changes in inheritable characteristics such as
the morphology or habitat preferences of organisms and can lead to speciation in the
long term (Coyne and Orr 2004; Nosil 2012). However, evolutionary processes like
local adaptation to a specific habitat occur within species and even within popula-
tions and are often difficult to detect. The field of population genetics uses genetic
markers to study these evolutionary processes by investigating changes in the
genetic constitution of populations across space and time.

Our current understanding of evolutionary theory is mostly based on the synthe-
sis of Darwin’s description of evolution through natural selection (Darwin 1859)
and Mendel’s inheritance principles (Mendel 1866). A crucial prerequisite for evo-
lution is the presence of genetic variation. New genetic variants arise randomly
through mutations. Depending on the location within the genome and the type of
mutation, new genetic variants can have no fitness effect at all on the organism car-
rying them (neutral genetic variants), or they can be beneficial or detrimental under
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certain conditions. Most mutations accumulating in the genomes of a species are
selectively neutral (e.g., synonymous mutations or mutations in intergenic regions),
while beneficial mutations are rare and deleterious mutations are purged by natural
selection. One could argue that neutral genetic variants are not important for evolu-
tion, but this is not true. Recent studies have shown that “neutral” mutations affect
evolutionary potential by facilitating phenotypic change through subsequent muta-
tions that would otherwise not have occurred, or by increasing the mutability of
flanking DNA regions (Tenaillon and Matic 2020). The fate of a new mutation
within a population is determined by a complex interplay of population dynamics
and environmental pressures mediated by evolutionary factors (Travis 1990). These
evolutionary factors—namely mutation, genetic drift, gene flow/migration, and
selection—are processes that change the genetic composition of a population
(Fig. 5.1).
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Fig. 5.1 Evolutionary factors shape the genetic constitution of populations. The complex inter-
play of the factors of mutation, migration/gene flow, selection, and genetic drift in combination
with environmental pressures and the specific characteristics of a population and the life history
traits of the species determine the population’s genetic setup. The arrows indicate interactions
between the population and the local environment. On the one hand, the environment shapes the
population’s genetic constitution through evolutionary factors, but on the other hand, the popula-
tion also affects the environment, for example, by creating habitats for associated species and
influencing microenvironmental conditions
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Independent of their fitness effect, all genetic variants are equally affected by
genetic drift, which describes a random change in allele frequencies over time
(Crow 2010; Fisher 1930; Wright 1931). These random fluctuations in allele fre-
quencies are undirected and independent of environmental conditions but strongly
influenced by population size and allele frequency. Especially in small populations,
rare alleles are likely to be lost from one generation to the next simply by chance
(Ellstrand and Elam 1993). Genetic drift will therefore lead to fixation at certain
loci, thus reducing genetic diversity. Populations evolving independently without
gene flow will become more differentiated from each other over time, meaning that
the same loci will show different allele frequencies and different alleles will be fixed
at some loci in each of the populations. As mentioned above, genetic drift is espe-
cially noticeable in small and isolated populations with only a few reproductive
individuals. Another risk for small populations that further reduces their viability is
mating between related individuals, also known as inbreeding. Inbreeding causes an
increase in homozygosity, which can lead to inbreeding depression, a reduction in
fitness in inbred individuals, particularly in predominantly outcrossing species
(Charlesworth and Charlesworth 1987). Although genetic drift and inbreeding do
not cause directed change, the resulting loss of genetic variation and reduced fitness
will cause a decrease in the adaptive potential of populations. Effective population
size (N,) has therefore been proposed as a suitable indicator for the genetic diversity
of populations (Charlesworth 2009; Hoban et al. 2021). However, this measure is
difficult to estimate—especially in large, continuously distributed species such as
many forest tree species—and should be interpreted with caution (Fady and Bozzano
2021; Santos-del-Blanco et al. 2022).

Gene flow and migration can introduce new genetic variants into a population
and thus increase genetic diversity. In sessile tree species, gene flow occurs via pol-
len dispersal between distant individuals while migration happens through long-
range seed dispersal. The efficiency and range of pollen flow and seed dispersal
depend on factors like the conspecific density within the landscape and specific life
history traits (e.g., dispersal modes) of each species (Ghazoul 2005). However, gene
flow and migration between populations are rare events by definition, since high
levels of gene flow and migration would have a homogenizing effect, resulting in
spatially separated groups no longer being considered distinct populations.

Selection is the result of differences in survival and reproductive success (fitness)
of genetically distinct individuals. Selection acts on phenotypes and can cause the
death of maladapted individuals (viability selection) under certain conditions or
lead to higher (or lower) reproductive success of certain individuals (fertility selec-
tion). In contrast to random genetic drift, selection causes a directed change in allele
frequencies enabling local adaptation of populations to specific environmental con-
ditions, pests, or pathogens. Tree species typically experience highly heterogeneous
biotic and abiotic conditions over time and across their distribution range due to
fluctuating environmental conditions or the episodic occurrence of certain pests and
pathogens. This heterogeneity of selection pressures is aggravated by the longevity
of trees and the vast diversity of organisms like mycorrhizal fungi, endophytes,
pests, and pathogens with which they interact (Boege and Marquis 2005; Linhart
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and Grant 1996). This causes a complex interplay of selection pressures that may
include frequency-dependent, balancing, and/or episodic selection as potential con-
tributors to the maintenance of genetic diversity (Petit and Hampe 2006).

Due to their long lifespan, one might think that evolution in tree species would
be slow—but studies have shown that tree species can exhibit quick adaptive
responses (Petit et al. 2004). Certain characteristics of trees may explain this para-
dox (reviewed in Petit and Hampe 2006): Tree populations are typically character-
ized by high levels of standing genetic variation (Hamrick and Godt 1996; Nybom
2004) even though they experience lower rates of molecular evolution and specia-
tion compared to herbaceous species (Smith and Donoghue 2008). This may be due
to the often very large effective population sizes, which also enabled the mainte-
nance of high levels of genetic variation throughout adverse climatic conditions in
the past (Milesi et al. 2024). Furthermore, tree species are predominantly outcross-
ing and have a very high lifetime reproductive output, and selection pressures are
particularly strong during their early life stages (Petit and Hampe 2006).
Differentiation between populations at neutral genetic markers is usually low due to
wide-ranging gene flow, while differentiation at quantitative traits is often pro-
nounced, reflecting local adaptation (Alberto et al. 2013a, b; McKay and Latta
2002). Furthermore, quantitative traits are typically polygenic, encoded by many
loci with moderate to small effect sizes (Yeaman 2022). This polygenic architecture
is thought to facilitate fast adaptive shifts, though there is general concern about
whether tree species will be able to adapt to the currently rapidly changing climatic
conditions (Lind et al. 2018).

Phenotypic Plasticity and Epigenetic Effects

Phenotypic plasticity is the ability of a given genotype to produce different pheno-
types under different environmental conditions (Pigliucci et al. 2006). These differ-
ent phenotypes may be expressed along environmental gradients or between years
with different environmental conditions (Gailing et al. 2021). A prominent example
for the investigation of phenotypic plasticity in tree species is the establishment of
response functions for a given trait along environmental gradients. Response func-
tions test the performance of provenances or genotypes between sites with different
environmental conditions (Poupon et al. 2021). For instance, these functions could
test how the height of trees differs along a temperature gradient. Tree species can
usually grow within a wide range of temperatures but tend to exhibit their best per-
formance at a specific temperature. This temperature optimum does not necessarily
overlap with the temperature at the population’s area of origin. For example,
Rehfeldt et al. (2002) developed response functions for 110 Pinus sylvestris popula-
tions growing at 47 planting sites in Eurasia and North America. The authors
inferred different growth potentials of the populations, which also exhibited differ-
ent climatic optima. The populations tended to inhabit climates colder than their
respective optimum (Rehfeldt et al. 2002). Phenotypic plasticity thus allows tree
species to grow under different or variable environmental conditions, which may be
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of great significance in the light of global climate change. However, rapidly chang-
ing environmental conditions may not allow tree species that usually have long
generation times to genetically adapt fast enough. Therefore, phenotypic plasticity
may help populations to survive by “buying time” to allow genetic adaptation to the
new environmental conditions to occur (Diamond and Martin 2021). Challis et al.
(2022) found intraspecific differences in drought tolerance due to adaptive pheno-
typic plasticity in marri (Corymbia calophylla; a south-west Australian foundation
tree species) saplings. The authors detected significant plasticity in a population
originating from warm, dry climatic conditions in response to water deficit and
therefore enhanced drought tolerance compared to a population originating from
cool and wet climatic conditions (Challis et al. 2022). Nevertheless, it should also
be mentioned that phenotypic plasticity can also prevent adaptation (Ghalambor
et al. 2007). This can be the case when the new phenotype is close to the one that
would be favored by selection under the new environmental conditions, thus leading
to the persistence of the population rather than adaptation by directional selection
(Ghalambor et al. 2007). Trees often exhibit high phenotypic plasticity, which can
be more impactful than genetic differences between provenances. For instance,
Garate-Escamilla et al. (2019) investigated trait variation among European beech
(Fagus sylvatica) trees in common gardens throughout the distribution range of the
species, invariably finding a higher contribution of phenotypic plasticity to trait
variation than that of local adaptation. A higher phenotypic plasticity (for height
increment) compared to genetic differentiation was also detected in a large translo-
cation experiment with European beech in Germany (Miiller et al. 2020).

One of the most important mechanisms underlying phenotypic plasticity is epi-
genetic regulation (Garcia-Garcia et al. 2022). Epigenetics describes processes that
alter gene expression without changes to the DNA sequence. There are three main
groups of epigenetic mechanisms that affect gene expression: DNA methylation,
histone modification, and processes mediated by noncoding RNAs (Kurpisz and
Pawlowski 2022). DNA methylation describes the covalent addition of a methyl
group to cytosine (and sometimes adenosine) and has been shown to be involved in
transposon silencing and gene regulation (Garcia-Garcia et al. 2022; Kurpisz and
Pawlowski 2022; Sow et al. 2018). Histone modifications (e.g., acetylation, meth-
ylation, phosphorylation, and ubiquitination) influence the compaction of chroma-
tin and can thus affect transcription (e.g., open chromatin is accessible to the
transcription machinery while condensed chromatin may not be) (Garcia-Garcia
et al. 2022). Noncoding RNAs can be involved in different processes including
DNA methylation (RNA-directed DNA methylation, RADM) and gene silencing
(Kurpisz and Pawlowski 2022). An increasing number of studies has been investi-
gating the role and mechanisms of epigenetic modifications in tree species. Most
studies focus on methylation since it has been shown to be involved in important
biological processes and several different methods for studying DNA methylation
are available (Garcia-Garcia et al. 2022; Miiller et al. 2023). For instance, differ-
ences in methylation patterns and correlations with environmental conditions have
been detected among populations of European beech and valley oak (Quercus
lobata) (Gugger et al. 2016; Hrivndk et al. 2017). Guevara et al. (2022) analyzed
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genetic and epigenetic variation among European beech populations from Germany,
Spain, and Sweden using amplified fragment length polymorphisms (AFLPs) and
methylation-sensitive amplified polymorphisms (MSAPs). They found lower
genetic and epigenetic diversity in Spanish provenances compared to provenances
from Germany and Sweden, with 15% and 16% of the variance among populations
associated with genetic and epigenetic variation, respectively (Guevara et al. 2022).
Besides the identification of epigenetic variation involved in environmental adapta-
tion, there is also an interest in finding epigenetic variants associated with (quantita-
tive) traits that are important in breeding programs. Lu et al. (2020) used quantitative
trait locus (QTL) mapping based on epigenetic markers (MSAPs) to identify epi-
genetic quantitative trait loci (epiQTLs) underlying growth and wood property traits
in Populus. The authors identified 163 epiQTLs that explained between 1.7% and
44.5% of phenotypic variation. Other studies have investigated small RNAs (sSRNA)
in forest tree species that may be involved in epigenetic mechanisms (e.g., Liu and
El-Kassaby 2017; Yakovlev et al. 2016; Yakovlev and Fossdal 2017). Yakovlev and
Fossdal (2017) analyzed sRNA in embryogenic tissues of Norway spruce (Picea
abies) that was produced under different epitype-inducing temperatures. They iden-
tified 654 micro RNAs (miRNAs) that were differentially expressed in the different
tissues. Modesto et al. (2022) identified 105 miRNAs that were responsive to pine
wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus.

Adaptation to Climate Change

Whereas the preceding section described adaptation at the individual level, focusing
on phenotypic plasticity and epigenetic effects, this section will examine long-term
genetic and evolutionary adaptation. Genetic adaptation refers to the process by
which the genetic composition of a population changes over time in response to
environmental pressures. It is through genetic adaptation that forest trees are able to
thrive in a variety of ecological niches ranging from dense tropical rainforests to
dry, cold-to-temperate regions. In particular, because of their nature as sessile organ-
isms and their long lifespan, the adaptation of trees to changing environmental con-
ditions is highly relevant (Aitken and Bemmels 2016). Furthermore, as a result of
ongoing climate change, trees are exposed to steadily changing and sometimes
extreme environmental conditions during their lifetimes.

The basis for genetic adaptation is genetic diversity, especially in genes express-
ing and regulating important adaptive traits. As forest trees usually exhibit high
genetic diversity within populations, their adaptive potential is estimated to be rela-
tively high (Aitken et al. 2008; Kremer and Hipp 2020; Savolainen et al. 2007).
Genetic diversity can be measured based on the comparison of individual genomes.
Defined as the totality of an organism’s genetic material including all its genes, the
genome is characterized by a unique sequence of deoxyribonucleic acid (DNA)
containing a unique combination of genomic variations. The most common types of
genetic variations are single nucleotide polymorphisms (SNPs)—nucleotide
changes at a single position. Originally arising as random mutations, most genomic
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variations are functionally neutral and thus not subject to selection (Gutschick and
BassiriRad 2003). However, when environmental conditions change, the presence
of certain genetic variants may become important as a prerequisite for selection and
thus possible adaptation.

This can be shown in the context of diebacks caused by newly emerging patho-
gens or insect pests, which is particularly important because pathogens also adapt to
changing abiotic conditions in the course of climate change and globalization, and
their distribution areas may change as a result. A prime example is the dieback of
European ash caused by the invasive pathogenic fungus Hymenoscyphus fraxineus,
which was most likely introduced to Eastern Europe in the mid-1990s through the
import of Fraxinus mandshurica plants from Eastern Asia (Budde et al. 2016;
McKinney et al. 2014). However, it was observed that some trees carried a partial
resistance in their genome and thus survived. McKinney et al. (2014) estimated the
frequency of resistant individuals in natural populations to be between 1% and 5%.
Although this number seems relatively low, it means that resistant individuals can
be expected in native populations, illustrating the adaptive potential of ash trees.

To identify genetic variants potentially causing or regulating an adaptive trait
such as bud burst, drought stress, or parasite resistance, the method of choice is usu-
ally to determine statistical associations of genomic markers like SNPs with pheno-
type measurements. These genome-wide association studies (GWAS) show that
adaptive traits are usually controlled by a very large number of genes, each of which
has only a minor effect on the phenotype (Alberto et al. 2013a, b; Kremer and Hipp
2020; Neale and Kremer 2011). Besides the high genetic diversity in forest trees, the
abundance of these so-called complex traits with their complementary contribution
of many genes to the trait variation is an indicator of high adaptive potential of for-
est trees to variable environmental conditions (Kremer and Hipp 2020). Various
studies have investigated the genomic sequences and identified candidate genes for
adaptive traits. In European ash trees, for example, more than 50 candidate genes
have been identified for the resistance to the ash dieback fungus—and numerous
homologs of them have been determined to be related to pathogen response in other
plant species (Stocks et al. 2019).

In a review article on abiotic genetic adaptation in the Fagaceae family, candidate
genes were identified that are found across species and could potentially affect mul-
tiple adaptive traits simultaneously (Miiller and Gailing 2019). For example, the
CONSTANS-like (COL) gene was identified as a candidate for bud burst timing in
Q. petraea (Alberto et al. 2013a, b) and F. sylvatica (Miiller et al. 2015, 2017), as
well as appearing as a drought-related candidate gene in Q. rubra and Q. ellipsoida-
lis (Lind-Riehl et al. 2014).

Furthermore, investigation of data collected along environmental gradients such
as temperature or precipitation can provide important insights into climatic adapta-
tion processes. In their study on Q. petraea, Alberto et al. (2013a, b) identified clinal
patterns along a latitudinal and altitudinal gradient, determining one SNP located in
the 59-adenylylsulfate reductase (APS) gene that was significantly correlated with
temperature in both gradients. The enzyme APS plays a key role in the sulfate
reduction pathway, which is involved in biotic and abiotic stress defense (Alberto
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etal. 2013a, b; Rennenberg et al. 2007). The same study also identified the circadian
clock gene GIGANTEA, which has been associated with precipitation in Q. petraea,
Q. robur, and Q. pubescens (Rellstab et al. 2016) and determined to be a main can-
didate gene for local adaptation in Norway spruce (Car€ et al. 2020).

To assess the behavior of populations under future environmental conditions,
predictive approaches have recently been aiming to measure the difference between
a current genomic composition and that required to cope with a changing environ-
ment, for example, due to climate change, at a set of putative adaptive loci (“genomic
offset”) (Dauphin et al. 2023). In general, conservation of genetic variance is of
utmost importance to maintain the high genetic and evolutionary adaptation poten-
tial in forest trees. However, particularly in southern and warmer marginal popula-
tions, genetic variation and adaptive potential may not be sufficient to adapt rapidly
to drought and higher temperatures, making these populations particularly vulner-
able to climate change (Fréjaville et al. 2020; Miiller and Gailing 2019; Tegel et al.
2014). Therefore, identification of genes regulating the expression of adaptive traits
is important not only for targeted gene conservation measures but also for the future
of forests, especially at the southern margins of their distribution areas that are
under increasing environmental stress.

Gene Flow and Migration

In the face of climate change, forest trees can also cope with changing environmen-
tal conditions through the dispersal of seeds (migration) or pollen (gene flow). Even
though trees and their female gametes are immobile, forest trees possess efficient
mechanisms to disseminate genetic information via seeds (diploid sporophytes after
fertilization) and pollen (haploid male gametophyte before fertilization) within and
between populations (Finkeldey and Hattemer 2007). Efficient dispersal mecha-
nisms and the high fecundity of forest trees can promote genetic connectivity and
facilitate the spread of adaptive genes and the colonization of new habitats (Kremer
et al. 2012). Accordingly, genetic variation in wind-pollinated tree species can be
comparatively high even in marginal populations at the species’ northern distribu-
tion edges (Gotz et al. 2022; Hampe et al. 2013). While effective pollen dispersal,
especially in wind-pollinated species, can occur over great distances—for example,
more than 80 km in pedunculate oaks (Buschbom et al. 2011; Kremer et al. 2012)—
long-distance seed dispersal is a rare event, e.g., in dominant tree species in temper-
ate forests with heavy seeds such as oaks, beech, and conifer species (Hampe 2011;
Hampe et al. 2013). However, the colonization of new habitats (e.g., by northward
migration) in response to the shifting of suitable conditions requires the dispersal of
the diploid sporophyte via seeds or fruits (Hampe 2011). Natural dispersion of tree
species thus likely generally lags behind the expansion of potentially suitable habi-
tats owing to limited seed dispersal, competing vegetation, and topographical fea-
tures as well as the associated microclimates (Moracho et al. 2016).

Efficient transmission of genetic information among populations increases their
adaptive potential and is the prerequisite for adaptation to rapidly changing
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environmental conditions through natural selection. On the other hand, gene influx
of maladapted alleles along steep environmental gradients or from non-native
planted populations introduced from a different environment (allochthonous popu-
lations) (Caré et al. 2020) can slow down adaptation processes. For example, 70%
to 92% of immigrant pollen from neighboring plantations was observed based on
paternity analyses in individual tree progeny in a locally adapted autochthonous
high-elevation seed stand of Picea abies (Caré et al. 2020).

While most forest tree species possess reproductive characteristics like high
fecundity and efficient means of gene dispersal that make them resilient to a certain
level of fragmentation, severe fragmentation and low conspecific tree density can
result in diminished gene exchange between forest fragments, reduction in the num-
ber of reproducing trees, mating between related individuals (inbreeding), and
genetic differentiation among fragments as a result of selection and inbreeding
(Ellstrand 1992; Ledig et al. 2001). It is therefore well demonstrated that gene flow
patterns and mating systems (selfing versus outcrossing rates) in trees are affected
by population density and fragmentation (Bodare et al. 2017; Ismail et al. 2014a, b,
2017). Lower population density can cause higher genetic differentiation of effec-
tive pollen contributions to individual seed trees, as well as higher selfing rates
(Goncalves et al. 2022; Murawski and Hamrick 1991; Tarazi et al. 2013). Increased
selfing rates and mating among related individuals can in turn affect the survival of
the progeny (inbreeding depression), especially in mainly outcrossing species such
as forest trees (Duminil et al. 2016; Eriksson et al. 2020). Especially in insect-
pollinated rare tropical tree species or lianas with low conspecific density, very high
inbreeding coefficients and levels of selfing were observed in isolated populations
(e.g., Ancistrocladus korupensis (Foster and Sork 1997), Pananga spp., (Shapcott
1999; cit. in Finkeldey and Hattemer 2007)), while in other more common tree spe-
cies, comparatively low levels of inbreeding (e.g., in Swietenia macrophylla (Lemes
et al. 2003; cit. in Finkeldey and Hattemer 2007)) and efficient long-distance pollen
dispersal (e.g., in the bee-pollinated tropical tree Dinizia excelsa, with a maximum
distance of 3.2 km (Dick 2001)) was observed. As an extreme example, among iso-
lated population fragments of the desert tree Ficus sycomorus, pollen flow distances
of up to 160 km mediated by small wind-borne, host-specific wasps (mean distance
of 88.6 km) were observed in the Namib Desert, Namibia (Ahmed et al. 2009), sug-
gesting that pollen flow may be effective over very large distances in highly frag-
mented landscapes. Likewise, while preferential mating between neighboring trees
within sampling sites and comparatively large numbers of full-sibs in individual
tree progeny were evident for the insect-pollinated temperate tree species Gleditsia
triacanthos L. in a highly fragmented agricultural landscape, pollen flow occurred
mostly from outside the plots and over very long distances (>12 km) (Owusu et al.
2016). On the other hand, converse effects of forest fragmentation on genetic varia-
tion were observed in two West African tree species with different successional
status. Severe effects of human impact and forest fragmentation were observed in
the late-successional species Mansonia altissima, while no adverse effects were
detected in the co-occurring pioneer tree species Triplochiton scleroxylon that pref-
erentially grows in open forests (Akinnagbe et al. 2019).
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Biodiversity conservation as a supporting ecosystem service is threatened by
increased land use change and fragmentation (Foley et al. 2005). Human impacts
affect the abundance and composition of species as well as evolutionary factors,
genetic variation, and the potential of populations to adapt to new and constantly
changing environments (Finkeldey et al. 2020). However, a diverse mosaic of forest
fragments might also maintain species diversity in general as well as gene flow
between conspecific trees in a highly fragmented landscape, and thus the evolution-
ary potential of these tree populations. Furthermore, connectivity among pockets of
tree populations depends on the landscape matrix, in which urban forest patches can
function as stepping stones, thereby facilitating gene exchange for some species
even in a highly fragmented landscape (Van Rossum and Triest 2012). Finally,
depending on their reproductive strategies, gene dispersal mechanisms, adaptive
potential, abundance, and distribution, tree species are affected differently by land
use change and habitat fragmentation (e.g., Akinnagbe et al. 2019).

Conservation and silvicultural measures should contribute to promoting rare tree
species and maintaining high genetic variation in natural regeneration for natural
selection to act upon. For example, measures to support the natural regeneration of
species at high risk of browsing and maintaining connectivity between stands
through migration and gene flow can promote natural adaptation processes (Gailing
et al. 2021). Conservation measures need to be adapted based on the reproductive
strategies and dispersal mechanisms of individual tree species, as well as on patterns
of genetic variation indicative of these mechanisms and past impacts of evolution-
ary processes. For example, widely distributed and predominantly wind-pollinated
species such as spruce, beech, and oak produce large amounts of pollen that can be
dispersed over long distances (e.g., Nascimento de Sousa et al. 2010), so compara-
tively high genetic variation is observed in these species even in peripheral popula-
tions, e.g., at the northern edge of their range (Gotz et al. 2022). However, the
transfer distance of pollen and seeds from more southern populations to northern
populations may not be sufficient to enable adaptation to extreme conditions in the
face of climate change. Therefore, for species with comparatively low heat and
drought resistance in temperate regions, the admixture of nonlocal origins (assisted
migration, Aitken and Whitlock 2013; Aitken and Bemmels 2016) based on climate
projections and results from provenance trials should be considered and is generally
recommended (Mauri et al. 2023).

The shift of species distribution ranges caused by climate change will potentially
generate new contact zones between closely related interfertile tree species. In
Germany, for example, suitable habitats for Q. pubescens, whose range is currently
restricted to southwestern Germany, will likely increase, as will the level of gene
flow from the drought-adapted Q. pubescens into Q. petraea and Q. robur.
Hybridization and introgression may generate positive effects through the transfer
of adaptive alleles (Arnold 2004), thus reducing the vulnerability of species with
narrow environmental ranges (Brauer et al. 2023), but they may also have negative
effects (outbreeding depression, Whitlock et al. 2013) on the adaptive potential of
tree populations, especially for rare taxa (e.g., high mountain species/subspecies
such as Pinus sylvestris subsp. nevadensis, Gomez et al. 2015).
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When the ranges of closely related species overlap (as in the case of interfertile
oak species), interspecific gene flow (hybridization) can occur; however, the fre-
quency of effective gene flow is dependent on the environment, likely due to postzy-
gotic selection (Khodwekar and Gailing 2017; Lind-Riehl and Gailing 2017;
Lind-Riehl et al. 2014). As a result of continuing interspecific gene flow, genome-
wide genetic differentiation between hybridizing species is low, except for genes
that have a possible function in different species adaptations, for example to drought
stress (outlier genes) (Leroy et al. 2020b). The exchange of genes between hybrid-
izing oak species may thus be environment-dependent and favor adaptation to
changing environmental conditions (Leroy et al. 2020a). For example, hybridization
frequently occurs among closely related oak species in contact zones within inter-
mediate environments (Lepais and Gerber 2011; Lind and Gailing 2013). Likewise,
introgression of outlier adaptive genes between closely related North American red
oaks with different drought tolerance was found to correlate with water availability
in the transition zone between species (Khodwekar and Gailing 2017). Gene
exchange between species or ecotypes may thus be another often-understudied
mechanism for relatively rapid adaptation of forest tree populations to new environ-
ments (Hamilton and Miller 2016; Chan et al. 2019). On the other hand, rare tree
species may be threatened by hybridization with more common native species or
introduced species through genetic assimilation or outcrossing depression (Carney
et al. 2000).

Decline and Extinction Risk

Decline and extinction risk refers to the potential of a species or population to
decrease in numbers or face the threat of extinction. Various factors including habi-
tat loss, climate change, pollution, overexploitation, and disease can contribute to
decline and extinction risk (Contreras-Hermosilla 2000; Lindenmayer 2023; Soulé
1983; Woo 2010).

Decline—Forest Decline

Forest decline describes a gradual reduction or deterioration of forest conditions. In
the context of forest decline or forest dieback, the term goes back to the large-scale
dieback of spruce forests in Germany in the 1970s and 1980s. It is defined, for
example, as a marked loss of vitality of many trees in an ecosystem, or as a wide-
spread decline in growth in soft- and hardwood ecosystems. These and similar defi-
nitions are not based on a universal standard, however, nor can the term “forest
decline” be explained monocausally (Innes 1992; Manion 1985; Mueller-Dombois
1992; Woo 2010).
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The Process of Extinction, the Risk of Extinction

“Extinction can be a natural process, and one we might not regret if it occurred at a
rate balanced by an equivalent rate of origin of new species” (Schonewald-Cox
et al. 1983). The process of extinction can most likely be attributed to a gradual loss
of fitness and is difficult to analyze. Among other things, it is important to note that
population extinction and species extinction are not the same. Because the process
of extinction is difficult to describe and the state of being extinct can rarely be accu-
rately determined, the term “extinction probability” or “extinction risk” is often
used in studies (Balmford et al. 2003; Kéry et al. 2006; Soulé 1983). Extinction risk
refers to the likelihood that a species will become extinct soon. It is assessed based
on various factors, including population size, distribution, reproductive rates,
genetic diversity, and environmental threats. The International Union for
Conservation of Nature (IUCN) has developed the Red List of Threatened Species,
which categorizes species into different levels of extinction risk ranging from “Least
Concern” to “Extinct” (Mace et al. 2008).

Both “decline” and “extinction risk” generally refer to the problem of dynamic
degradation of forest conditions that eventually leads to extinction (Collen et al.
2011). In terms of solving this problem, further questions need to be addressed,
such as whether the ecosystem is affected, whether individual species are more
likely to be affected than others, whether the dynamics are localized, and how fast
they are progressing. The criteria for assessing extinction risk are provided in the
IUCN Red List (Mace et al. 2008).

With respect to global climatic changes, the only processes by which tree species
and their defined ecosystems can avoid possible extinction are adaptation and
migration. The extent to which the genetic system of tree species is able to compen-
sate for a dramatic loss of genetic variation must be analyzed individually for each
species. In this context, the identification of thresholds—e.g., with regard to genetic
variation—is fundamental (Aitken et al. 2008; Hamrick 2004; Trumbore et al.
2015). Particularly important for the development of action strategies is to deter-
mine when the process of decline actually enters the phase of extinction, at which
point the process may no longer be reversible. Since not all species and ecosystems
are protected in the same way, measuring these dynamics and defining priorities is
essential (Kéry et al. 2006; Myers et al. 2000; Trumbore et al. 2015).

How to Measure?

A variety of methodological approaches ranging from global remote sensing via
satellites to local vegetation surveys of individual species exist. The data thus col-
lected also form the basis for meta-analyses, for example, to identify biodiversity
hotspots or model species’ extinction scenarios. Furthermore, extinction probabili-
ties and rates can be measured and estimated indirectly, for example, by considering
the effects of habitat loss. Artificial intelligence is also being used to estimate the
conservation status of species worldwide. In addition to direct observation in field
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studies, a further method for analyzing the genetic basis of biodiversity is the use of
gene markers (Balmford et al. 2003; Bredemeier et al. 2007; Fussi et al. 2016; Pimm
and Raven 2000; Silva et al. 2022).

In general, time series with repeated measurements are used to measure the
dynamics of ecosystem and species decline or extinction. This can lead to biases
and errors related to the probability of observations for individual species. To mini-
mize such errors, many authors point out that the most accurate measurement of
species decline or extinction can only be based on permanent monitoring using
well-defined areas and methods (Balmford et al. 2003; Fussi et al. 2016; Lindenmayer
2023; Trumbore et al. 2015).

What to Measure? Indicators and Verifiers

For assessing forest management, Stork et al. (1997) proposed a concept based on
indicators and verifiers. An indicator is a variable or component of the forest ecosys-
tem or the relevant management systems used to infer attributes relating to the sus-
tainability of the resource and its utilization. Verifiers are data or information
enhancing the specificity or ease of assessment of an indicator. They may define the
limits of a hypothetical zone from which recovery can still safely take place (perfor-
mance threshold/target).

Later, this concept was used by forest geneticists and conservation biologists
(Boyle 2000; Namkoong et al. 2002) to describe the dynamics of genetic structures
in populations based on four indicators.

Indicator 1: Levels of variation

Indicator 2: Directional change in allele or genotype frequencies
Indicator 3: Migration/gene flow among populations

Indicator 4: Reproductive processes/mating system

To determine critical thresholds, a combination of comparatively easy-to-observe
demographic and genetic characteristics is used. For example, verifiers concerning
indicator 1 are the number of sexually mature individuals (demographic) and genetic
diversity (genetic). In combination with a monitoring system, these indicators can
be used to detect changes in genetic structures with potentially deleterious effects
on the adaptive potential of forest trees early on (Fussi et al. 2016). However, the
debate about the optimal indicators or indicator combinations is still ongoing
(Graudal et al. 2014).

Finally, it is crucial to address decline and extinction risk on a global scale
through collaborative efforts among governments, conservation organizations, sci-
entists, and the public. Implementing conservation strategies and promoting sus-
tainable practices could reduce the decline and extinction risk of many species.
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Box 5.1 Terminology

Gene flow. Effective transfer of genetic information by pollen containing the
haploid male gametophyte resulting in fertilization and development of a dip-
loid embryo.

Migration. Transfer of genetic information via seeds containing the dip-
loid embryo.

Hybridization. Effective gene flow between taxa resulting in interspecific
first-generation (F,) hybrids.

Introgression. Backcrossing of an F, or later generation hybrid with one of
the parental taxa.

Adaptation. An evolutionary process that increases an individual’s proba-
bility of survival and reproduction in a given environment.

Evolutionary/adaptive potential. The ability of a population or species to
adapt to new environments as a result of natural selection. The genetic varia-
tion in adaptive genes is directly related to a population’s adaptive potential.

Adaptive trait. A trait that increases an individual’s probability of survival
and reproduction in a given environment.

Phenotypic plasticity. The ability of an organism to physiologically adapt
to changing environmental conditions.

Epigenetic regulation. Stable altered gene expression without changes in
the DNA sequence through DNA methylation, histone modification, and pro-
cesses mediated by noncoding RNAs.

Genetic system. The way of transmission of genetic material from parent to
filial generations.
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Abstract

Forest ecosystems are significantly impacted by climate change, particularly
through drought and increased weather variability. Forests are characterized by
their long-lived vegetation, making it essential to consider climate projections
when planning forest management actions—especially those involving the selec-
tion of tree species for reforestation and afforestation. In this context, the follow-
ing pages present two examples: (1) A global estimation of trends in forest
biomass change from 2020 to 2100 utilizing the Global Forest Model (G4M,
Kindermann et al., Carbon Balance Manag 8: 2, 2013) and (2) an assessment of
tree species suitability within the European Alps.

Keywords

Climate change - Alps - Global forest - Black locust - Douglas fir - Norway spruce
- Forest biomass

Projection of Forest Biomass Change Using the Global
Forest Model

The ITASA Global Forest Model (G4M, https://iiasa.ac.at/g4m) estimates the pro-
ductivity of five forest types (evergreen needleleaf, evergreen broadleaf, deciduous
needleleaf, deciduous broadleaf, and woody savannas) across four ecoregions:
Tropical, subtropical, temperate, and boreal. The estimation is based on dynamic
site characteristics such as monthly temperature, precipitation, radiation, and CO,
concentration; semi-dynamic factors including water holding capacity and soil
depth as well as nitrogen, phosphorus, salinity, and pH values; and static attributes
such as air pressure.

By combining forest productivity with different management regimes (e.g.,
maintaining current stock, maximizing harvests, maximizing stock, or avoiding har-
vests), which can be enabled or disabled to change the current species to better
adapt to potentially altered site characteristics, the model shows the development of
increment (carbon sequestration), stock (stored carbon), and harvests (potential
substitutes for nonrenewable products, also storing carbon).

The projection of forest biomass change (tC/ha) under the current management
(without deforestation) and assuming the RCP2.6 climate scenario (a mild emis-
sions pathway with projected temperature increases limited to below 2 °C compared
to pre-industrial levels) is presented in Fig. 6.1. A significant increase in biomass is
possible through sustainable forest use in the tropics. Biomass loss is mainly pro-
jected in dry and semi-dry areas such as central China, eastern Siberia, sub-Saharan
Africa, Australia, eastern Brazil, and the central USA. This loss occurs even under
the relatively mild climate change scenario RCP2.6, highlighting the increasing risk
of droughts in these regions. The changes in biomass are increasing gradually, and
the main trends are already visible in the short-term forecast by 2030, although
losses naturally occur faster than accumulation (Fig. 6.1).
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Fig. 6.1 Projected forest biomass change (tC/ha) assuming continuation of current management
(without deforestation) and RCP2.6 climate scenario for (a) short-term, (b) medium-term, and (c)
long-term development
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A comparison of projected biomass changes until the end of the twenty-first
century under different climate scenarios RCP2.6 (a), RCP6.0 (b), and RCP8.5 (c)
is presented in Fig. 6.2. Even in the mildest climate change scenario (RCP2.6), 28%
of the forest area would experience a decrease in biomass, with 8% suffering sub-
stantial losses of more than 15 tC/ha. Under the harshest considered climate change
scenario (RCP8.5), the forest area with decreased biomass reaches 65%, with 38%
experiencing significant losses. Notably, only a few environments remain favorable
for forests by the end of the twenty-first century; this includes regions with a high
elevation and/or at high latitudes as well as certain moist tropical areas with secure
water supplies. Major threats to tropical forests associated with climate change are
also confirmed by Doughty et al. (2023)

The results provided by the G4M model highlight areas of risk where conven-
tional forest management may not be able to sustain forest biomass and productivity
under changing climate conditions. Addressing these challenges requires more
comprehensive strategies such as climate-smart management and assisted migration
of suitable tree species (see Chap. 14).

Mapping Area Suitability for Selected Tree Species Under
Various Climate Change Scenarios in the European Alps

Climate projections predict substantial changes in temperature and precipitation for
the European Alps over the coming years (Fig. 6.3). Most areas will experience
reduced amounts of precipitation. Even slight precipitation increases in some areas
cannot compensate for the concomitant rise in temperature.

For mapping habitat suitability of selected tree species, data from two sources
was used: (1) A systematic sample from the national forest inventories (NFI) of
Alpine countries that provides insights into the presence and absence of species and
(2) crowdsourced global species occurrence data from iNaturalist (https://www.
inaturalist.org/). While the data regarding tree species in NFI may be limited,
crowdsourcing offers a global perspective on their distribution (see Fig. 6.4). Global
data is particularly valuable since it provides information on species distribution
and suitability across diverse climatic conditions. Using these data sources, we
work with presence-only data (Engler et al. 2004), meaning that we only possess
information about locations in which species were observed, but no data on their
absence in other areas. Several methods developed for utilizing occurrence data in
modeling are discussed in the literature, including the Random Forest Classifier
(Valavi et al. 2021) and MaxEnt (Della Pietra et al. 1997; Phillips et al. 2006). We
then compare these data with maps of ecological parameters relating to climate,
soil, and geomorphology. This step aids in delineating ecological boundaries for
species distribution and identifying the preferable range of parameters. In the final
stage, we employ Alpine maps of ecological conditions to determine species suit-
ability under current and future climates. Figure 6.3 outlines the analysis workflow.

Examples of native (Norway spruce) and introduced (Douglas fir and black
locust) species are presented in Fig. 6.5 for the current climate period (2001-2010)
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Fig.6.2 Projected forest biomass change (tC/ha) by the end of the century under different climate
scenarios, assuming continuation of current management. (a) RCP2.6—a mild emissions pathway
with projected temperature increases by 2100 limited to below 2 °C compared to pre-industrial
levels, (b) RCP6.0—projected temperature increases of around 3 °C, and (¢) RCP8.5—tempera-
ture increase exceeding 4 °C
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Fig. 6.3 Projected mean annual precipitation changes in the Alpine region by 2050 compared to
the base year 2010 assuming an RCP 8.5 scenario (Compilation for the Alpine Space based on
CHELSA climate data)
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Fig. 6.4 Integrated risk modeling (Norway spruce)

and the RCPS8.5 climate projection for the end of the twenty-first century
(2081-2090). Although the Douglas fir appears most promising under current cli-
mate conditions, it faces the severest challenges among the three analyzed tree spe-
cies by the end of the century, particularly under the extreme RCP8.5 climate change
scenario (see Fig. 6.5).
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Fig. 6.5 Climate risks for three different tree species under assumption of RCP8.5 in the
Alpine region

To identify the climate risks for selected tree species, we model the changes in
their suitability under various climatic conditions. This provides essential informa-
tion for policymakers to manage the future distribution of tree species in the Alpine
region. While future climate conditions may pose a risk to some native tree species
such as the Norway spruce, non-native tree species may become more suitable in
certain areas.
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Abstract

Soil, ranking third in importance after air and water for supporting life on land,
provides habitat, nutrients, water, and a physical foundation for plants, animals,
fungi, and microorganisms. Thus, forest ecosystems, like all land-based ecosys-
tems, are entirely dependent on soil for their existence. Consequently, soil health
is critical to ecosystem connectivity, since without healthy soils, there are no
healthy ecosystems or species to connect with one another. Therefore, a founda-
tional knowledge of soil properties, its formation, and its role in shaping forest
ecosystems is essential to comprehending the concept of forest ecosystem
connectivity.

Soil is formed by the weathering of Earth’s rocky surface and reflects past
climates, geology, and vegetation. By studying soil, we can learn about previous
environmental conditions and predict which plants may grow on it now and in
the future. Soil not only supports plants but is teeming with complex assem-
blages of diverse and abundant life. A handful of healthy forest soil can contain
as many individual organisms as all the people on Earth.

Plants play three pivotal roles in impacting soil properties, by shaping its physi-
cal structure, chemical composition, and the habitats it provides for other organ-
isms. However, not only plants but all terrestrial organisms, from tiny microbes
to larger animals, influence soil structure and function. Through burrowing, bio-
turbation, and microbial activity, soil organisms help shape the complex struc-
ture of soil, optimising it for their own needs. This chapter aims to describe the
most important properties, services, and interactions of soil within forest ecosys-
tems, underscoring its importance in maintaining forest health and connectivity.

Keywords

Forest soil characteristics - Soil ecosystem services - Soil biodiversity - Humus -
Nutrient cycling - Hydrology - Soil organic carbon

Characteristics of Forest Soils

Soil is a complex and dynamic system that results from various interactions over
time. Soil properties are the characteristics of soil that describe its chemical, physi-
cal, and biological attributes. Specifically, forest soils are characterised by a natural
profile structure resulting from moderate intensity of silvicultural management
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(Stolte et al. 2015). Due to the long rotation period typical in forestry, the nutrient
cycles tend to be closed, with the soil acting as a nutrient store and playing a central
role in the recycling of organic matter. The forests of the world (boreal, temperate,
and tropical forests) range across a variety of climatic conditions and soil proper-
ties, with a high variation across steep spatial gradients (Binkley and Fisher 2013).

Parent Material

Rock is the most common source of parent material for soil formation. It is a solid
aggregate of minerals with distinctive characteristics and origins. Rock can be clas-
sified into three main types: Igneous, metamorphic, and sedimentary (Brady and
Weil 2016).

Igneous rock is formed by the cooling and solidification of magma or lava.
Examples of igneous rocks are andesite, basalt, diorite, gabbro, and granite.

Metamorphic rock is formed by the transformation of existing rock when sub-
jected to high pressure and temperature. Examples of metamorphic rock are
amphibolite, gneiss, serpentinite, and schist.

Sedimentary rock is formed by the accumulation and compaction of sediments,
which are fragments of rocks, minerals, or organic material that have been eroded,
transported, and deposited by water, wind, ice, or gravity. Sedimentary rock has a
variable mineral content depending on the source and type of sediments. Examples
of sedimentary rock are breccias, conglomerates, limestone, and sandstone.

The parent material determines the initial chemical composition of a soil, includ-
ing the type and amount of minerals and various physical properties such as soil
texture. As some materials are more resistant or susceptible to weathering than oth-
ers, the parent material also influences the rate and direction of soil formation.

Soil Formation

Soil formation or pedogenesis is the process of soil development from parent mate-
rial in combination with climate, topography, organisms, and time. It involves the
transformation of parent material into soil horizons, which are layers of soil with
distinct properties such as colour, texture, and nutrient availability (Brady and Weil
2016; Scheffer and Schachtschabel 2018). The translocation and redistribution of
soil constituents such as water, nutrients, and organic matter within and between
horizons likewise play a crucial role in the formation of soil and affect its chemical,
physical, and biological attributes. In general, soil formation is the result of dynamic
and continuous processes that can be affected by natural or human-induced changes
in the environment (Jenny 1994). Among these processes, the following are crucial:

Weathering is the process of physical and chemical breakdown of parent mate-
rial into smaller particles and soluble substances caused by diverse factors, such as
hydrology, temperature, carbon dioxide, acids, and organisms.
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Decomposition is the process of biological breakdown of organic matter into its
constituent components and elements. Organic matter includes all dead plant and
animal residues as well as synthetic substances such as organic waste or pesticides.
Decomposition is differentiated into humification and mineralisation.

Humification is the process of transforming organic matter into humic sub-
stances. These are stable, dark substances that contribute to the formation of a
humus layer (see Box 7.1) and play a significant role in the nutrient and water bal-
ance in the top- and subsoil.

Mineralisation is the process by which microorganisms break down organic
matter into dissolved inorganic compounds, making them available to the nutrient
cycle and allowing them to be absorbed by plant roots.

Translocation is the process of vertical and horizontal movement of soil con-
stituents within and between horizons. Translocation can be caused by various
forces, exerted by water, gravity, wind, and organisms.

Gleying is the process of reduction of iron and manganese compounds in water-
logged soils. Anoxic conditions change the oxidation state and solubility of iron and
manganese ions, resulting in greenish-blue-grey soil horizons. The transition zone
between anoxic and oxic conditions exhibits mottles of reddish, yellow, and orange
colours along with the colours of the anoxic horizon.

Podsolisation is the process of formation of acidic soils in cold to temperate
humid climates with high precipitation and under plant species with low nutrient
requirements. This results in the accumulation of organic matter, translocation
(leaching) and destruction of clay minerals, and the accumulation of iron and
aluminium.

Soil Physical Properties

Soil physical properties are the characteristics of soil that describe its physical struc-
ture and behaviour. They are primarily determined by the size, shape, and arrange-
ment of soil particles, which affect water retention and movement, aeration and gas
exchange, temperature and heat transfer, and erosion and compaction processes.
The features of soil particles are influenced by the nature and origin of the parent
material, as well as by the processes of weathering, decomposition, translocation,
gleying, and podsolisation. The size and shape of soil particles determine the soil
texture, which is the relative proportion of sand, silt, and clay particles in a soil
sample (Fig. 7.1). Soil texture in turn affects the surface area, porosity, permeability,
and water holding capacity of soil (Hillel 2003). The arrangement of soil particles
is influenced by the processes of translocation and aggregation that modify and
transform the soil structure. The soil structure is the spatial organisation of soil par-
ticles and pores into aggregates or peds, which are units of soil featuring distinct
shapes and sizes.
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Fig. 7.1 Soil texture triangle used to define soils by texture (After Montanarella et al. 2010)

Soil Chemical Properties

Soil chemical properties are the characteristics of soil that describe its chemical
composition and reactions. The chemical properties of soil are primarily determined
by its mineralogical composition, the origin and nature of the parent material, and
the processes of soil formation that modify and transform it. Weathering alters the
mineral composition of the parent material and the soil matrix and releases nutrients
and ions into the soil solution. The release of organic matter and nutrients through
decomposition and the redistribution of minerals, organic matter, and nutrients
between and within soils by translocation also affects chemical properties such as
pH, cation exchange capacity, base saturation, and organic matter content. The pH
is a measure of the acidity or alkalinity of the soil solution, which affects the nutri-
ent status of plants and microorganisms. The cation exchange capacity describes the
ability of the soil to retain positively charged ions (cations) such as calcium, mag-
nesium, and potassium, which are essential plant nutrients. Base saturation is a mea-
sure of the proportion of cations that are bases (alkaline) rather than acids on the
surface of soil particles. Organic matter content is a measure of the amount of
carbon-containing compounds derived from living organisms in the soil, which
affects the nutrient cycling, water retention, and biological activity of soil (Brady
and Weil 2016).
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Box 7.1 Humus

Humus is composed of organic material at various stages of decomposition,
which is transformed into complex compounds such as humins, fulvic acids,
and humic acids through the process of humification. It is generally found at
the surface of the soil but also plays a significant role in the mineral subsoil.
This first layer of soil generally contains the greatest abundance and diversity
of organisms that decompose organic matter. It is also a major driver and
indicator of processes, such as decomposition rate and carbon storage, which
shape entire ecosystems. To grasp the functioning of a forest ecosystem at a
fundamental level, it is imperative to have a good understanding of different
humus forms and what they reveal about the respective ecosystem.

Generally, the different humus forms are the result of a changing rate of decom-
position. The rate of decomposition is influenced by all soil formation processes
(see Soil formation), with the effect of climatic gradient, parent material, and veg-
etation being the most profound. Mull consists of an OL (organic litter) layer and
sometimes also an OF (organic fermented) horizon. The organic material falling to
the ground as litter is quickly broken down and integrated into the upper (A) mineral
soil horizon by macrofauna such as earthworms. Amphi and Moder humus types,
found on calcareous and siliceous parent material respectively, are typically thicker
forms of humus with three distinct horizons: OL, OF, and OH (organic humus),
which indicate slower rates of decomposition. Amphi, which is generally less
acidic, tends to have high zoogenic activity across the spectrum of mega-, meso-,
and microfauna along with slower rates of decomposition resulting solely from a
cooler climate. Moder, on the other hand, tends to be rather acidic (pH < 5) owing
to the combination of noncarbonate parent material and ligneous-rich litter input
from conifers, with fungi dominating the primary decomposers in terms of biomass.
Tangel and Mor humus forms exhibit the slowest transformation of litter into min-
eral soil. Tangel is a thick (>15 cm), woven-together, and slowly decomposing
humus found on high alpine hard calcareous rock where decomposer activity is
frozen for most of the year. Mor is usually very acidic due to a combination of sili-
ceous parent material and ligneous litter input from conifers, with decomposition
further slowed by cold climate. Due to the harshness of conditions, both forms tend
to have a lower total and relative abundance of biogenic activity (Fig. 7.2).

Humus is extremely important for many of the ecosystem services provided by
soil. It is the first horizon to accumulate and store soil organic carbon (SOC) after
afforestation; the process of decomposition that occurs in the humus provides food
for the bulk of all soil biodiversity; and it can hold 80%—90% of its dry weight in
moisture, thus helping mitigate drought and flood events.
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Fig. 7.2 Schematic of humus forms in the terrestrial environment (Adapted from Montanarella
et al. 2010)

Soil Ecosystem Services

Soil ecosystem services are the various benefits humans gain from the ground. They
can be separated into three broad categories: The principal category is the direct
provisioning of materials such as food, water, fuel, raw building materials, and
medicinal plants. The secondary category encompasses regulatory services such as
nutrient cycling, water purification, habitat provision, and carbon storage. The third
and less quantifiable group of services may be termed as “natural beauty”. These
services are important to humans by helping to satisfy our aesthetic, cultural, recre-
ational, spiritual, and scientific needs (Geitner et al. 2019). Following air and water,
soil is the third most important component for supporting life on Earth, and essen-
tial for the survival of all terrestrial organisms. There is a long list of ecosystem
services and functions provided by soil, which include:

Water storage, runoff regulation, and purification: Water availability for
plants and soil biota. Precipitation uptake, flood mitigation, and removal of pollut-
ants to provide drinking water.

Nutrient cycling: Storage and exchange of macro- and micronutrients with
plants and microorganisms.

Global climate regulation: The ability of soil to store and potentially sequester
carbon from the atmosphere.

Habitat and biodiversity: Soil is home to an immense range of biotic diversity.

Agricultural biomass production: Food, fodder, technical fibre, medicinal
plants, and energy biomass.

Forest biomass production: Construction timber, fuelwood, and non-timber
forest products.
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Microclimate regulation: Local air-cooling effect from plant
evapotranspiration.

Cultural and natural archives: Soil can preserve objects from the past and
offer us insights into past events and processes through the interpretation of its cur-
rent form.

Recreational and spiritual services: Soil is the surface upon which many sport-
ing, cultural, and spiritual events take place.

This section provides information on three of the more relevant services that soil
provides in terms of ecosystem connectivity: water storage, runoff regulation and
purification, nutrient cycling, and soil’s role in global climate regulation. All fall
into the broad category of regulatory ecosystem services.

Soil Hydrology

Hydrologic processes are fundamental to both soil habitat quality and the mitigation
of extreme hydrological events, with a strong feedback loop between the two
aspects. Due to the essential role of water in all biological processes, soil hydrology
significantly influences soil biodiversity across various scales. It affects life in soils
directly via water availability and indirectly via air availability and is among the
most critical factors affecting the diversity, abundance, and composition of soil
organisms. At the microscale level, soil moisture regulates the metabolic activity of
microorganisms. Water is a vital component in soil biochemical reactions, facilitat-
ing enzymatic reactions and transporting nutrients required for microbial growth.
Changes in soil moisture affect microbial diversity and community composition,
leading to altered soil processes (Drenovsky et al. 2004). At a larger scale, water
affects soil structure, porosity, and aeration, all of which influence the diversity and
distribution of soil fauna. Soil moisture conditions have a direct impact on animal
activity, burrowing, and reproduction. Conversely, however, the activity of soil
micro- and macro-organisms also alters a soil’s hydraulic properties. High micro-
bial activity generally leads to increased stabilisation of soil organic matter and
reduced bulk density. These two effects positively affect the water storage capacity
of soil and facilitate its rewetting. The water drainage function created by earth-
worms or burrows of larger soil-dwelling organisms is likewise important for infil-
tration of water into the soil and, by extension, prevention of surface runoff (Védere
et al. 2022). Active and diverse forest soils therefore provide the important function
of water retention and water storage and are crucial elements in the hydrological
cycle. Such forest ecosystems can effectively fulfil their mediating role in the hydro-
logical cycle, serving as a buffer against flooding or periods of drought-induced stress.

Different soil organisms are adapted to different hydrological soil regimes such
as waterlogged soils, seasonally flooded systems, or soils with access to groundwa-
ter or seawater, to name just a few. However, land-use changes and climate change
are nowadays the main drivers of soil transformation (Berhe 2019), altering the
hydrological regime of forest soils in many regions of the world. For example, the
draining of wetlands and intensive forest management practices cause vast changes
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in forest hydrological cycles (Bredemeier et al. 2010) that can have a severe impact
on the soil organism composition. It is estimated that 80% of previously extant wet-
lands in Europe have disappeared (Finlayson and Spiers 1999). Riparian habitats
are rich in biodiversity at temperate latitudes, and from a biodiversity conservation
and connectivity perspective, their preservation and restoration are extremely valu-
able (Muys et al. 2022).

Soil Nutrient Cycling

“The same circulation exists on the surface of the earth as in the sea; there is unceasing
change — a perpetual destruction and re-establishment of equilibrium.”
—Justus Liebig, 1849

Forest nutrient cycling is the exchange of elements between living and non-living
components of ecosystems. Nutrients such as nitrogen, phosphorus, and carbon are
essential for plant growth and survival, and their cycling in forest ecosystems is
regulated by numerous factors including climate, plant species community struc-
ture, soil type, and topography (Foster and Bhatti 2006). The processes of forest
nutrient cycling are nutrient uptake and storage in vegetation, litter production,
decomposition, nutrient transformations by soil organisms, atmospheric inputs,
mineral weathering, and nutrient export from the soil.

Climate arguably plays the most significant role in nutrient cycling, with latitude
and altitude representing a rough proxy for temperature. Terrestrial primary produc-
tion generally increases from colder boreal forests through mild temperate forests to
warmer tropical forests, while forest soil (specifically topsoil and organic horizon)
nutrient content and residence time increase in the opposite direction. The cold
average annual temperatures in subarctic woodland soils and taiga forests result in
slow nutrient cycling rates. On the contrary, warm tropical forests have high micro-
bial activity and turnover leading to fast decomposition and nutrient cycling rates.
Variation in nutrient cycles is also influenced by biotic factors such as tree species-
specific regulation of resource use: Different tree species have varying nutrient
requirements and strategies of nutrient use affecting their general patterns of nutri-
ent accumulation, partitioning, and recycling (Coleman et al. 1983).

Abiotic factors such as soil character, topography, and parent material also influ-
ence nutrient cycling in forests. Soils developed from different parent materials vary
greatly in terms of nutrient content and availability. The constraints of soil proper-
ties and microclimatic variation define the potential forest plant community struc-
ture, and thus productivity and nutrient cycling processes. For example, soils with a
low pH tend to promote trees with low-quality, high-lignin-content litter that decom-
poses slowly.

Disturbances like fire, harvesting, and natural events have lasting impacts on
nutrient cycling. Forest fire can redistribute ecosystem nutrients through ash deposi-
tion, mineralisation of nutrients bound in organic matter, and charcoal formation,
while harvesting interrupts nutrient cycling by removing nutrients bound in wood
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biomass from the system. Forest management practices can affect nutrient cycling
positively or negatively depending on their impact on soil and vegetation (Rahman
et al. 2013). For example, extensive forest management practices, such as selective
harvesting, can be employed to reduce large interruptions of the nutrient cycle,
thereby enhancing the habitat quality of forest ecosystems.

Soil Organic Carbon

Soil organic carbon (SOC) is with approximately 1500 Pg carbon, the largest store
of terrestrial carbon on the planet (Petrokofsky et al. 2012; Scharlemann et al. 2014),
and plays a crucial role in maintaining the structure, fertility, and functioning of
forest soils. Carbon constitutes approximately 58% of all soil organic matter (SOM),
which is a derivative of decaying plant and animal material, and soil microorgan-
isms and their exudates (Perie and Ouimet 2008). This organic material supplies
energy and nutrients to soil organisms and binds soil particles together, thereby
helping to reduce erosion and improve the water holding capacity of soil (Heimann
and Reichstein 2008). In addition, SOC is usually positively correlated to soil pH,
which increases the availability of essential plant nutrients such as nitrogen, phos-
phorus, and sulphur.

With approximately 20 Pg of total biomass in global soils, soil biota not only
makes up a significant fraction of SOC, but is also responsible for processing and
integrating organic matter into long-term stores of SOC through their necromass
and secretions (Crowther et al. 2019). The more healthy and active forest soils are,
the more potential they have to effectively process, humify, and mineralise this
material into long-term stores (Chertov et al. 2017).

At a global level, forest SOC is vital to mitigating the effects of climate change
(Heimann and Reichstein 2008). Forests grow and accumulate biomass by absorb-
ing carbon dioxide (CO,) from the atmosphere through photosynthesis. In death and
decomposition, plant biomass carbon is cycled into SOC, reducing atmospheric
CO, and associated greenhouse effects. Further research into the soil food web, and
specifically carbon nutrient flow, is required to better understand how biomass car-
bon is cycled into long-term stores of SOC and how soil microbial community com-
position mediates this process.

Soil Biodiversity

Soil biodiversity is the diversity of living organisms within the soil. As previously
established, soils are extremely complex systems that vary greatly in how they are
formed, which influences their chemical and physical structure over space and time.
The impact of climate and site conditions, plus the effects of plant communities that
grow on them, both past and present, adds to their heterogeneity. Such an immense
variety of ecological niches leads to a superabundance of species potentially present
in a small amount of soil. This species richness can be hard to comprehend, with the
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total number of species present in one handful of healthy forest soil approximating
the estimated number of the world’s plant, animal, and insect species combined—
around ten million (Montanarella et al. 2010). Plants represent the largest propor-
tion of biomass of any group of organisms living in the soil, and due to rooting
patterns and litter input, they have the greatest influence on the physical and chemi-
cal structure of soil. Soil type and plant community together strongly influence the
potential diversity and structure of additional soil biota (Berg and Smalla 2009).

Soil is home to and necessary for the life of all terrestrial plants, animals, fungi,
and single-celled organisms. Soil-specific biota can generally be divided into three
groups based on size (Montanarella et al. 2010): Macro- and megafauna larger than
two millimetres (earthworms, ants, woodlice, centipedes, amphibians, reptiles,
mammals, and birds); mesofauna from two millimetres down to one hundred
micrometres (0.1 mm), comprising tardigrades (water bears), collembola (spring-
tails), and mites; finally, microfauna and microflora between one and one hundred
micrometres (0.001-0.1 mm), including nematodes, bacteria, fungi, protozoa, and
other single-celled organisms (Fig. 7.3).

Soil Mega-, Macro-, and Mesofauna

Megafauna: Soil megafauna species are not big compared to other large animals,
and rarely exceed a total mass of one kilogram per individual. They are typically
vertebrates adapted to life underground, with slender bodies, efficient digging appa-
ratus, and particularly sensitive noses that often have the capacity to detect
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Fig.7.3 Soil biota divided into three groups based on size (Adapted from Montanarella et al. 2010)
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bioelectric signals—for example, moles, shrews, salamanders, and blind snakes.
Some mammals and birds nest in the ground but are not considered truly euedaphic,
meaning they are specifically adapted to subterranean life. Soil megafauna influ-
ences the invertebrate community structure by predation, carrion, and faeces and by
modifying the soil structure through burrowing and bioturbation.

Macrofauna or “ecosystem engineers” are the principal litter transformers on
the forest floor. Here are a few of the more important species and some of their key
features:

Ants (formicidae): Form nests in trees, on the ground surface, or underground.
They have often evolved remarkable symbiotic relationships with other organisms
in their home environments, such as leaf-cutter ants, who build exceptionally large
nests up to 300 m* where they store harvested leaves on which they grow a fungus
as their main food source. Other ants “care” for certain aphid species in order to
harvest nutrient-rich secretions from the fattened aphids.

Termites: Feed on dead plant material and are extremely accomplished nest
builders, with some termitaria estimated to have been continuously occupied for
more than 50,000 years.

Isopods or woodlice: Occupy all terrestrial landscapes, from seashores to high
alpine environments. They are often found under stones, deadwood, and bark and
represent important detritivores that digest leaf litter and mediate microbial com-
munities and nutrient cycles.

Myriapods or centipedes and millipedes: Myriapods are arthropods with elon-
gated bodies that have up to several tens of similarly shaped segments, each bearing
one or two pairs of legs. They tend to be more commonly found in calcareous soils
and are important contributors to the destruction of litter in the first phase of
decomposition.

Earthworms: Found in soils all around the world. They are not particularly
adept at digesting organic matter, but make up for this with prolific bioturbation,
processing 10-30 times their own body weight in soil every day. They can be sub-
divided into three groups according to where they live in the solum:

Epigeic—In the upper humus and litter layers.
Anecic—Dwelling in the topsoil, they mix organic matter into the soil system.
Endogenic—Living and feeding in the deep soil.

Mesofauna: Includes a large number of organisms that break down plant debris,
digest soil and organic matter, and also feed on primary decomposers. Key repre-
sentatives of this group include:

Enchytraeidae or potworms: Key members of the soil biotic food web by feed-
ing on decaying organic matter and microbivores, as well as serving as food for
other soil fauna such as centipedes and mites (acari).

Acari: Part of the class Arachnida and one of the most numerous arthropod
groups in the soil, with potentially hundreds of thousands of individuals per square
metre at particularly rich sites. They are distributed throughout the solum, though
typically concentrated at the surface, and exhibit diverse feeding strategies. They
not only primarily decompose decaying organic material, but also engage in para-
sitic behaviour. Additionally, they are known to symbiotically carry bacteria and
fungi into humus material to aid in its breakdown and consumption.
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Collembola: Also known as “springtails” due to their method of propulsion by
releasing tension in their curved abdomen to fling themselves away from potential
predators. They are believed to be the most abundant hexapods on Earth and feed on
organic detritus in all forms. Interestingly, collembola have been found to aid moss
fertilisation by accidentally carrying moss sperm (which must otherwise swim) on
their bodies to fertile moss archegonia (Cronberg et al. 2006).

Nematodes: The most abundant multicellular organism on Earth, with densities
of up to ten million individuals per square metre. About 30,000 species are known
to science, but this number is estimated to be only 3% of the total (Abebe et al.
2011). They take the form of cylindrical tubes and inhabit the water film around soil
particles. Due to their distinct mouth morphology, they are typically classified into
five groups based on their dietary preferences: Bacterivores, fungivores, omnivores,
plant parasites, and predators.

Rotifers: These minute animals (0.2-0.4 mm in length) are superabundant in the
soil surface, and like most soil mesofauna, require some amount of moisture to live
and move around. They are important members of the soil food web who feed
almost exclusively on bacteria, algae, and yeasts.

Tardigrades: Commonly known as water bears due to their bear-like appear-
ance, they are renowned for their incredible resistance to extreme environments.
They can endure temperatures of up to 100 °C and periods of desiccation for more
than 20 years after which, when rehydrated, they can reanimate, lay eggs, and carry
on with life (Mgbjerg and Neves 2021). A community of tardigrades was even sent
into low Earth orbit and exposed to the extreme conditions of the vacuum of space,
after which several of them laid eggs and resumed life as usual (Fig. 7.4).

Soil Microorganisms

Soil microorganisms form highly diverse and complex communities and are com-
monly grouped into bacteria, fungi, archaea, protists, and viruses (Crowther et al.
2019; Fierer 2017). A single gram of soil can contain more than 50,000 different
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species and more than 0.5 mg of microbial biomass carbon (Banerjee and Van Der
Heijden 2023; Gao et al. 2022). Globally, soil microorganisms store about 27 Pg, 4
Pg, and 2 Pg of carbon, nitrogen, and phosphorus in their biomass, respectively
(Gao et al. 2022). The most abundant microbial taxa in soils are bacteria and fungi,
which contribute to a variety of important below-ground processes (Fierer 2017).
For example, bacteria and fungi are the primary decomposers of dead organic mat-
ter, making them major drivers of carbon and nutrient cycling in terrestrial ecosys-
tems (Van Der Heijden et al. 2008). Bacteria also interact with plant roots and
mediate multiple critical steps in the nitrogen cycle, including nitrogen fixation
from the atmosphere (Lladé et al. 2017). Many fungal taxa form mycorrhizal sym-
bioses with plant roots, supplying their hosts with growth-limiting nutrients and
water from the soil in exchange for photosynthetically fixed carbon (Read and
Perez-Moreno 2003; Smith and Read 2010). Among mycorrhizal associations, ecto-
mycorrhiza, arbuscular mycorrhiza, and ericoid mycorrhiza are the geographically
most important types (Read and Perez-Moreno 2003; Soudzilovskaia et al. 2019;
Ward et al. 2022). Another key functional group of soil microbiota are pathogens,
which can have a strong influence on plant diversity and community composition
(Van Der Heijden et al. 2008). Climatic changes including elevated CO, levels,
higher temperatures, and increased drought incidence are expected to strongly affect
the composition and functioning of soil microbial communities (Jansson and
Hofmockel 2020).

Summary “Soil: The Foundation of Forest Ecosystems”

Soil plays a critical role in providing habitat for forest species and supporting eco-
system functionality. Soil properties strongly influence potential species commu-
nity composition within forests. Research suggests that forest structural diversity is
positively correlated with soil organism diversity (Lang et al. 2023). However, soil
properties, particularly SOC content and pH, are the strongest predictors for varia-
tion in taxonomic richness and soil community composition (Crowther et al. 2019;
Hogberg et al. 2007; Llad6 et al. 2017; Soudzilovskaia et al. 2019). Moreover, the
type of humus and litter composition significantly impact microbial and insect com-
munities residing in the soil (Asplund et al. 2019; Ponge and Chevalier 2006;
Salmon et al. 2005).

So we see that the relationship between soil ecosystem functionality and soil
community composition forms strong feedback loops. Changes in soil moisture
affect microbial diversity and community composition, leading to alterations in soil
processes (Drenovsky et al. 2004). Furthermore, soil biota and soil nutrient input
are connected in another feedback loop mediating soil community composition
(Aponte et al. 2013), with SOC, in particular, playing a profound role due to its
wider implications for climate change mitigation.

With our world’s rapidly warming climate and land-use intensification, habitat
destruction threatens forest ecosystems and the species they support. Maintaining
habitat connectivity is essential for species survival, as it facilitates the transfer of
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energy, resources, and genetic material throughout the ecosystem. Soil, along with
its associated functions and biota, is a fundamental component of forest ecosystems.
Assessing connectivity in forest habitats requires consideration of the landscape
structure, species movement, and habitat quality.

A rarely studied concept is the connectivity of soil organisms themselves. There
are very few studies which specifically focus on how habitat connectivity affects
soil organism connectivity through movement or genetic connectedness. Below is a
brief description of the three most relevant studies discovered in the literature search
for this chapter. In Rantalainen et al. 2005, Rantalainen et al. showed how over a
three-year time period, enhanced habitat connectivity of small circular patches (@
120 cm) on a 50 x 50 m plot of soil increases the colonisation efficacy of soil fungi.
A later study loosely relevant to soils showed that forest fragment connective struc-
tures, in this case hedgerows, were shown to be important habitats for rare forest
plant species (Wehling and Diekmann 2009). The most recent and relevant study
showed that SOC was the most common driver of soil biota richness, while habitat
connectivity had a positive impact on larger soil faunal organism richness (Lopezosa
et al. 2023). There are obviously large knowledge gaps in this area of study with lots
of potential for specific research questions relating to the effect that forest habitat
connectivity has on soil community composition.
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Abstract

Forest ecosystems face increasing threats from climate change, resource exploi-
tation, and other anthropogenic disturbances causing biodiversity loss and habi-
tat fragmentation. The conservation priority of connected, healthy forests
necessitates robust monitoring that covers the landscape, ecosystem, species, and
genetic levels and employs direct as well as indirect methods. Connectivity
objectives encompass patch colonization, prioritization, and landscape assess-
ment at multiple scales. Monitoring landscapes and forest ecosystems involves
assessing their physical attributes and functional diversity to understand biodi-
versity, land-use changes, and threats like deforestation and climate impacts.
Remote sensing offers large-scale data collection, while terrestrial surveys
including laser scanning provide detailed insights into forest dynamics.
Challenges include scale issues, standardization, and potential oversights in
finer-scale variations. While species monitoring captures long-term shifts in
abundance or distribution, it can be resource-intensive and challenging for elu-
sive species. Alternatively, molecular methods such as the use of environmental
DNA (eDNA) can be effective for community monitoring, with DNA analysis
being particularly effective for detecting the presence of endangered or elusive
organisms and providing spatial and temporal high-resolution data for effective
conservation and management. Gene-based monitoring traces changes in indi-
vidual species’ genetic parameters over time. Genetic indicators, which have
recently been included in biodiversity monitoring standards, provide essential
insights into connectivity and adaptive capacity. Landscape genetics combines
conservation genetics and ecology to understand gene flow barriers and facilita-
tors: population synchrony signals functional connectivity. Although genetic
monitoring demands great technical expertise, it is less time-consuming than
conventional methods. For future forest connectivity monitoring, a combination
of various approaches is conceivable. Existing connectivity indicators need rig-
orous evaluation in terms of their sensitivity to environmental impacts. Dynamic
models and novel indicators along with data sharing and collaboration will be
crucial for future efforts in connectivity monitoring.

Keywords

Molecular methods - Forest structure - Functional group - Genetic diversity -
Trophic level

Introduction

Forest ecosystems are critical habitats that support a vast number of plant and ani-
mal species. They are essential for global environmental well-being owing to their
provision of ecosystem services and regulating factors (Cardinale et al. 2012;
Emmett Duffy 2009) but are undervalued in economic systems (FAO 2022). The
land area covered by forests and trees is also an important indicator in the
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monitoring of forest ecosystems and the assessment of environmental conditions
(Keenan et al. 2015). However, forests around the world are under increasing pres-
sure from climate change (Gaston 2000), resource exploitation, and anthropological
disturbances (Holzwarth et al. 2020).

Globally, both multilateral institutions and national governments have recog-
nized the urgent need for immediate action to conserve and restore ecological con-
nectivity so as to help combat the alarming decline of biodiversity (Keenan et al.
2015; Pither et al. 2023). Results of recent assessments indicate dramatic increases
in deforestation and the loss of connected habitats—and thus ultimately of forest
species and overall biodiversity (Barnosky et al. 2011; Ceballos et al. 2017; FAO
2022; Mittermeier et al. 2011). Recent data also confirm that agricultural expansion
drives almost 90 percent of global deforestation, with an estimated 289 million ha
of land facing deforestation between 2016 and 2050 in the tropics alone (FAO
2022). Forest loss rates are highest in low-income countries (Keenan et al. 2015).

Essential characteristics of biodiversity include the composition, structure, and
function integrating different levels of organization of organisms (Noss 1990). The
term therefore encompasses the diversity of living entities on different levels of
organization—from molecular, genetic, individual, and species to populations,
communities, biomes, ecosystems, and landscapes. The interrelation of biodiversity
with species community composition, nutrient cycling, and ecosystem productivity
highlights its importance in maintaining the integrity and resilience of ecosystems
(Gaston 2000; Maclaurin and Sterelny 2008).

Conservation plans now increasingly focus on maintaining a connected network
of healthy and resilient areas (Keeley et al. 2021). For instance, linkages between
conserved areas and new target sites to establish well-connected protected area sys-
tems are becoming common goals. Ensuring connectivity within and among forests
is essential for ecological balance, biodiversity, and ecosystem resilience in the face
of environmental changes (Kacic and Kuenzer 2022; Pearson et al. 2021). To effec-
tively achieve conservation goals, the implementation of robust forest ecological
and biodiversity monitoring methods at different spatial scales (local, regional, and
global) is crucial (e.g., Evans et al. 2018). While increasing the amount of forested
area tends to take center stage in public discussions involving forest monitoring data
and reports, the state of monitoring methods and their effectiveness is critical to
understanding ecological connectivity and the social-ecological benefits of forests
and forestry. A distinction can be made between direct monitoring methods, which
include habitat or species mapping, and indirect methods involving the modeling of
species distributions and spatial patterns, including functional diversity (Gillespie
et al. 2008; Nagendra 2001). Targeted monitoring also allows the assessment of
conservation objectives for connectivity, as highlighted by Keeley et al. (2021).
These objectives include (i) evaluating the connectivity of a specific patch to predict
patch colonization, (ii) prioritizing areas for conservation and restoration efforts,
(iii) quantifying the contribution of a specific site to the overall connectivity of the
landscape, and (iv) evaluating the connectivity of an existing network of sites or an
entire landscape. In this chapter, we will focus on monitoring approaches at four
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different levels of organization—namely landscape, ecosystem, species, and
genes—incorporating compositional, structural, and functional components.

Monitoring Landscapes and Forest Ecosystems

A landscape is characterized by its visible and physical features like landforms,
vegetation, and land-use types (Urban et al. 1987). The structural elements of a
landscape are essential for providing habitats for plant and animal species, and the
arrangement and configuration of these elements significantly influence habitat con-
nectivity (Ernst 2014). Key landscape parameters such as patch size, heterogeneity,
perimeter—area ratio, and connectivity serve as significant determinants of species
composition and abundance (Noss 1990). In addition, the composition of the land-
scape—including the type and proportions of specific habitats—is of critical impor-
tance. Noss (1990) emphasized that the “functional combination” of habitats within
the landscape mosaic is crucial for animals that rely on multiple habitat types. This
includes ecotones and species assemblages that transition gradually along environ-
mental gradients.

The arrangement of trees within a forest, together with other vegetation, terrain,
and water, determines its stand structure (Seidler 2023), which encompasses the
physical geography of the forest considered at different spatial scales. The stand
structure includes characteristics like canopy cover and understory diversity, species
distribution patterns, soil characteristics, age structures, and species composition. It
is also crucial for shaping the biodiversity and functionality of an ecosystem. The
presence of different tree species of varying age classes and distribution patterns
significantly influences the overall health and resilience of a forest (Franklin et al.
2002). A diverse stand structure creates a plethora of niches and habitats supporting
a wide array of plant and animal species adapted to specific conditions within the
forest environment—from animals dependent on dead trees for nesting to others
that browse on plants in light gaps, from bark- and wood-boring insects to those that
consume root fungi (Boyle et al. 2016). As highlighted by Seidler (2023), changes
in a forest’s stand structure often stem from shifts in species composition and the
age structure of trees. This can lead to alterations in the overall ecosystem structure,
affecting biodiversity and ecosystem functions alike (Seidler 2023; Valbuena
etal. 2012).

Approaches to Monitoring and Evaluating Landscapes
and Forest Ecosystems

Earth Observation
Remote sensing technologies such as satellite imagery and aerial surveys have revo-

lutionized landscape and forest monitoring. These tools enable us to collect vast
amounts of data over large areas, enabling visualization and analysis of land cover
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changes, deforestation rates, and forest health (see also Chap. 9). Integration of
geographic information systems (GIS) facilitates informed decision-making for
conservation and land-use planning. The Copernicus Land Monitoring Service
offers a high-resolution forestry layer with three types of products available: tree
cover density, dominant leaf type (deciduous, coniferous, etc.), and a forest-type
product following the forest definitions of the Food and Agriculture Organization
(FAO) (Copernicus Programme 2023). With the availability of higher spatial resolu-
tion and area-covering datasets, we can derive detailed information on nationwide
forest cover distribution and dynamics. This includes assessments of forest loss;
changes in species composition; disturbances due to droughts, fires, storms, and
plagues; and forest recovery and regrowth (Holzwarth et al. 2020).

Thanks to the increasing availability of remote sensing data and user-friendly
processing software, remote sensing imagery has become a highly relevant and
important tool for monitoring land cover dynamics. The consistent and repeatable
measurements of remote sensors offer cost-effective solutions for large-scale biodi-
versity monitoring. Moreover, satellite imagery allows us to assess vegetation con-
ditions in inaccessible, remote areas (Gillespie et al. 2008; Nagendra et al. 2013).
While in situ monitoring of physical parameters as well as their modeling across
landscapes and forests remains crucial, there is a growing emphasis on monitoring
functional diversity (Wang and Gamon 2019). Functional diversity encompasses a
broad spectrum of attributes such as reproductive, developmental, life history,
dietary, ecological, and other functions that distinct species exhibit within an eco-
system (Mason and Mouillot 2013). Understanding functional diversity helps reveal
the interplay between species and their ecological functions such as pollination,
seed dispersal, and predation. By monitoring functional interactions, we gain deeper
insights into ecosystem functioning and the underlying mechanisms that sustain
ecosystem health and resilience.

Terrestrial Surveys

Terrestrial surveys involve the systematic observation and assessment of the physi-
cal environment within forest ecosystems. This approach helps identify changes in
land use, vegetation cover, and habitat quality that directly impact connectivity.
Such scrutiny of forest structure and biodiversity has traditionally been conducted
as field surveys organized in small plot units from which general conclusions about
the overall environmental conditions are drawn (Hui et al. 2019; Palmer et al. 2002).
Ecological studies have adopted variables such as stand structure degrees, tree spe-
cies composition, and population distribution patterns, while forestry studies have
used variables such as tree height and diameter distribution and canopy cover (Hui
et al. 2019). These variables directly reflect the different aspects of forest structure.
Over the past two decades, there has been a growing interest in the use of terrestrial
laser scanning as a tool for forest plot measurements. It enables nondestructive
quantification of forest development and provides valuable insights into the dynam-
ics of biodiversity and ecosystem function mechanisms at high temporal resolution
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(Guimaries-Steinicke et al. 2019). Efforts have been made to replace traditional
plot-scale measurements (Lovell et al. 2003; Newnham et al. 2015). According to
Newnham et al. (2015), terrestrial laser scanning enables the assessment of tree
volume, growth, and foliage development. Furthermore, it facilitates the scaling-up
of ground-based measurements with airborne laser data to create detailed 3D mod-
els. These models may lead to more precise and comprehensive assessments of
vegetation and ecosystem dynamics.

Advantages and Disadvantages of Landscape and Forest
Ecosystem Monitoring

Monitoring landscapes and forest ecosystems offers significant advantages, such as
the determination of large-scale patterns and assessment of ecosystem dynamics,
biodiversity, and land-use changes. In addition, it allows early detection of potential
threats like deforestation, habitat loss, and climate change impacts, enabling timely
intervention. The scale of monitoring can pose challenges, however (Keeley et al.
2021), requiring standardized methodologies and advanced data processing. What
is more, broad-scale monitoring may overlook finer-scale variations and specific
ecological interactions within an ecosystem. In situ field sampling can also be time-
consuming and expensive when conducted on a large scale. To overcome these limi-
tations, it is crucial to combine landscape-level monitoring with localized and
fine-scale assessments to achieve a more comprehensive understanding of ecosys-
tem dynamics and better inform conservation and management decisions.
Additionally, variations in survey methods among experts and disciplines can lead
to a scarcity of standardized data, impeding cross-disciplinary synthesis and man-
agement goals (Lohmus et al. 2018). To enhance the effectiveness of ecosystem
monitoring, efforts are undertaken to address these limitations through collaborative
research and data standardization initiatives.

Monitoring Species and Communities

Species monitoring as defined by Moussy et al. (2022) involves the systematic and
repeated collection of data to detect long-term changes in the abundance or distribu-
tion of one or more taxa or taxonomic groups. Such monitoring is crucial for con-
servation practice and policy since many species are interlinked, fulfilling essential
ecosystem functions and offering valuable ecosystem services (Liu et al. 2018).
Noss (1990) emphasized the importance of monitoring multiple species or groups
of species deserving special conservation effort, such as (i) indicator species, which
predict the impact of perturbations on other species with similar habitat require-
ments, (ii) keystone species shaping the diversity of their respective community
whose decline can lead to cascading effects on the entire ecosystem, and (iii)
umbrella species with extensive habitat requirements whose protection benefits
numerous other species sharing the same habitat (e.g., Mills et al. 1993; Roberge



8 Monitoring Methods for the Protection of Connectivity in Forest Ecosystems 149

and Angelstam 2004; Simberloff 1998). In addition to these well-established cate-
gories, we emphasize the inclusion of a further group for forest ecosystems: (iv)
forest-related species. This category encompasses species that either form an inte-
gral part of forest ecosystems or depend on forests for their daily living or reproduc-
tive needs (CBD 2023). By prioritizing the monitoring of forest-related species, we
can simultaneously protect the habitats and resources they rely on, promoting sus-
tainable forest management and long-term ecological balance.

Recently, Banker et al. (2022) underlined the importance of understanding tro-
phic positions when planning restoration activities. In some cases, human activities
may have altered a community to the extent that restoring a specific species or its
interactions may no longer be feasible. In such instances, it becomes crucial to
explore alternative approaches to monitor and restore vital ecosystem functions that
may have become compromised. One such alternative encompassing a broader
range of taxa is the assessment of functional groups or species communities
(Brunialti 2014). A functional group is a set of species coexisting within a given
community that share similar functional characteristics, particularly with regard to
providing specific ecosystem services. These functional groups are commonly
known as “plant functional types” in vegetation science and “guilds” in animal sci-
ence (Pla et al. 2012).

In the context of forest ecosystems, the most prevalent functional groups can be
categorized based on their trophic levels, which include producers, consumers, and
decomposers (Egerton 2007; Elton 1927). Figure 8.1 illustrates an example of link-
ing taxa that have been identified as highly relevant for monitoring within the cor-
responding trophic level. These groups play pivotal roles in essential processes
within forests, such as wood and litter decomposition, pollination, predation, phy-
tophagy, or overall biomass production (Schuldt et al. 2018). The functional compo-
sition undergoes deterministic changes, meaning that functional groups tend to
exhibit shifts over time. However, the abundances of individual species within these
functional groups may also drift randomly (Rubio and Swenson 2022). Exploring
the interplay between deterministic and neutral dynamics within functional groups
may provide a more comprehensive perspective on how forests respond to environ-
mental changes, species invasions, and other disturbances—and thus enhance our
ability to predict and manage forest ecosystems in the face of ongoing global envi-
ronmental challenges.

Approaches for Assessing Species and Communities

Key monitoring methods for species and species groups encompass a diverse range
of techniques including human observations, camera trapping, passive acoustic
monitoring, GPS tracking, and DNA-based tools.
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Fig. 8.1 Illustration of main trophic levels in forest ecosystems highlighting functional types and
guilds identified as relevant for monitoring

Human Observations

Human observations are a fundamental approach to recording and documenting
species data. Trained observers or citizen scientists look at species and their behav-
iors, distributions, and interactions, enabling real-time data collection. Observation
by humans can be both direct and indirect: direct observation involves spotting a
species in its natural habitat, while indirect observation focuses on recording signs
such as nests, tracks, or feces (for further details, see Chap. 12) (Buckland et al.
2001; Thompson et al. 1994). As highlighted by Richard-Hansen et al. (2015),
direct observations tend to be biased toward mammal and bird species that are easily
detectable due to their vocalizations, size, and habits. By contrast, species that are
rare, small, nocturnal, or cryptic are less likely to be observed. Direct observation
requires highly skilled observers, and observer bias may arise as a result of differ-
ences in expertise and interests. These issues can be mitigated through careful train-
ing, limiting the length of monitoring sessions, and reducing the number of tasks
assigned to each observer (Emlen and DelJong 1992). Consequently, direct field
observations are best suited to highly detectable species and may not be ideal for
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community assessments that require broad taxonomic coverage (Roberts 2011).
Indirect observation, on the other hand, offers several advantages: signs left by ani-
mals are more abundant than the animals themselves and generally remain visible
for a certain time (Zwerts et al. 2021).

Camera Trapping

Camera trapping is a highly effective and noninvasive method used to capture
images and videos of wild animals in their habitat. It is particularly valuable for
studying elusive or nocturnal species, providing essential data on species presence,
abundance, and behavior within forest habitats. The popularity of camera trapping
has grown significantly over the past three decades (Glover-Kapfer et al. 2019).
Equipped with passive infrared sensors (Welbourne et al. 2016), camera traps can
record a wide range of wildlife spanning various sizes and taxonomic groups,
including mammals (Tobler et al. 2008), birds (O’Brien and Kinnaird 2008), and
reptiles (Ariefiandy et al. 2013; Hobbs and Brehme 2017). Time-lapse photography
and specialized camera traps can even be used to survey arthropods (Collett and
Fisher 2017; Hobbs and Brehme 2017). In general, camera trapping is a suitable
technique, especially for monitoring active and less vocally communicative terres-
trial animals of medium to large size. Its versatility extends beyond these taxa; how-
ever, validating the data from this is critical for accuracy assessments, thus allowing
it to also be used to survey smaller, cryptic, and rare species in remote areas (e.g.,
Bessone et al. 2020; Khwaja et al. 2019).

Passive Acoustic Monitoring

Similarly to camera trapping, passive acoustic monitoring is a noninvasive and pow-
erful technique used to detect and analyze sounds emitted by wildlife, including
calls, vocalizations, and other acoustic signals. This method proves particularly
effective for the study of nocturnal animals or species that primarily communicate
through sound. By capturing and analyzing these sounds, passive acoustic monitor-
ing facilitates the identification of species presence and activity levels, especially in
dense forest environments. Passive acoustic monitoring is a rapidly developing and
growing monitoring method for terrestrial wildlife (Darras et al. 2019), expanding
its range of applications beyond the marine environments in which it is most com-
monly used. By deploying acoustic recording units (ARUs), researchers can con-
tinuously record the soundscape of a specific area over extended periods. The
resulting data comprises a diverse range of sounds from biotic (animals), abiotic
(water and wind), and anthropogenic (traffic) sources, as emphasized by Pijanowski
et al. (2011). The versatility of passive acoustic monitoring extends its capacity to
monitor all species that produce identifiable calls or sounds, thus offering an advan-
tage over other monitoring techniques. Even elusive species like insects (Aide et al.
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2017; Ganchev and Potamitis 2007) can be effectively monitored with this tech-
nique, enabling valuable insights into their presence and behavior.

GPS Tracking and Telemetry

The use of GPS tracking devices or telemetry tags has revolutionized the field of
animal ecology by enabling the study of species across various landscapes and habi-
tats. By tracking animals’ locations in real time, researchers can gain a comprehen-
sive understanding of their migration patterns, territory usage, and habitat
preferences (Frair et al. 2010). This data is particularly valuable for identifying criti-
cal habitats as well as corridors and barriers affecting animal movements, thus facil-
itating connectivity planning (e.g., Bastille-Rousseau and Wittemyer 2021; Stewart
et al. 2019). Several studies have showcased the effectiveness of GPS tracking for
studying animal movements and behavior (Eriksen et al. 2011; Knopff et al. 2009).
For instance, studies on large carnivores like wolves (Planella et al. 2016) and cou-
gars (Maletzke et al. 2017) have demonstrated the significance of GPS technology
in understanding their spatial ecology and interactions with human landscapes. GPS
tracking has also been instrumental in studying migratory birds such as raptors
(Katzner et al. 2012) and seabirds (Wakefield et al. 2013), providing critical data on
their migration routes and stopover locations. By equipping animals with GPS-
enabled collars or tags, researchers can gain remarkable insights into the lives of
wildlife, and the continuous advancement of GPS technology has significantly
enhanced our ability to track and study animals across diverse landscapes and
habitats.

DNA-Based Methods

In recent years, the use of molecular methods for species identification and detec-
tion has seen a tremendous increase fueled by technological advances such as high-
throughput sequencing (Bruce et al. 2021; Cristescu 2014). This section summarizes
the main trajectories of these developments and discusses their application in the
context of monitoring ecological connectivity in forests. Two decades ago, Hebert
et al. (2003) formally proposed using molecular methods for the large-scale system-
atic identification of species. Molecular tools offer the potential to overcome the
limitations of morphological identification, such as the difficulty of accounting for
phenotypic plasticity and the inability to discern morphologically cryptic taxa
(Cristescu 2014; DeSalle and Goldstein 2019; FiSer Pe¢nikar and Buzan 2014).
DNA-based methods mitigate two practical shortcomings of conventional species
identification as they can be applied to all life stages of an organism and offer an
efficient alternative to the morphological identification of many taxa extending
beyond family categorization (FiSer Pe¢nikar and Buzan 2014; Hebert et al. 2003).

Originally, the DNA of individual specimens was extracted, followed by ampli-
fication and sequencing of a short region of the mitochondrial genome, the so-called
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DNA barcode (Hebert et al. 2003). After a DNA barcode is generated from a mor-
phologically identified specimen, it can be used as a reference sequence for future
monitoring efforts (DeSalle and Goldstein 2019). The generation of comprehensive
DNA barcode databases from morphologically identified specimens is a prerequi-
site for the large-scale application of DNA barcoding. Considerable efforts have
been made to generate such databases (e.g., the Barcode of Life Data System
(BOLD); Ratnasingham and Hebert 2007), and recent endeavors have focused on
barcoding the immense biodiversity of tropical regions and of previously underrep-
resented taxa (Hobern 2021; Janzen and Hallwachs 2019). However, DNA barcod-
ing of a single gene is usually not sufficient to correctly determine the phylogenetic
relationship between taxa. The technique is therefore primarily used to detect spe-
cies diversity and its temporal and spatial dynamics (Cristescu 2014; DeSalle and
Goldstein 2019), but frequently, reference specimens or DNA extracts are preserved
to enable future investigations at the population and individual levels (Hendrich
et al. 2015).

In recent years, advances in high-throughput sequencing techniques have enabled
the processing of bulk samples (i.e., extraction, amplification, and sequencing from
hundreds of individual specimens at once), giving rise to the term “metabarcoding”
(Cristescu 2014; Ji et al. 2013; Yu et al. 2012). During high-throughput sequencing,
millions of sequences are generated by amplification and parallel sequencing of the
barcoding regions. These sequences are subsequently subjected to bioinformatic
pipelines for the delimitation of individual samples and taxonomic assignment of
the generated barcodes (Bik et al. 2012; Porter and Hajibabaei 2018). Metabarcoding
drastically reduces the individual handling time of specimens (Cristescu 2014; Ji
et al. 2013; Porter and Hajibabaei 2018) while delivering high-quality data on spe-
cies assemblages and their structure (Bruce et al. 2021; Bush et al. 2019). However,
metabarcoding is not devoid of shortcomings. They include amplification bias intro-
duced by mismatches at the priming site (Clarke et al. 2014), underrepresentation of
sequences originating from small specimens (Elbrecht et al. 2017), PCR and
sequencing errors (Turon et al. 2020), and low-quality sequences hampering taxo-
nomic assignment (Rivera et al. 2020). For this reason, many algorithms have been
developed to optimize bioinformatic processing and taxonomic assignment for dif-
ferent taxa and sequencing platforms (e.g., Boyer et al. 2016; Buchner et al. 2022;
Callahan et al. 2016), rendering metabarcoding a promising and efficient approach
to assessing biodiversity and its changes in light of the global biodiversity crisis
(Cristescu 2014). Substantial efforts are currently underway to test the implementa-
tion of metabarcoding data in routine monitoring programs and establish standards
for their generation and use (Aylagas et al. 2018; Bruce et al. 2021; Geiger et al.
2016; Gueuning et al. 2019).

Whenever the monitoring of species is challenging, an identification or detection
problem is likely the root cause (Bruce et al. 2021). DNA barcoding and metabar-
coding have a clear focus on the identification aspect, while analysis of environmen-
tal DNA (eDNA) has the potential to improve the detection aspect. eDNA is defined
as free DNA, cell components, secretions, tissue fragments, and the like released
into the environment by organisms (Bohmann et al. 2014; Thomsen and Willerslev
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2015). Filtered air (e.g., Lynggaard et al. 2022), water (e.g., Lamb et al. 2022), and
soil (e.g., Vasar et al. 2023) are commonly used environmental sample types con-
taining extraorganismal DNA (e.g., mucus, feces, or dander) as well as organismal
DNA (i.e., individuals of small species contained in the environmental sample)
(Deiner et al. 2017; Rodriguez-Ezpeleta et al. 2021).

Two techniques are used for the detection of eDNA: i) targeted amplification
with species-specific assays and ii) the metabarcoding approach (Bruce et al. 2021).
For both approaches, the molecular sondes (i.e., primers) need to be carefully
designed and validated to avoid amplification of taxa outside the scope of the study
from the environmental sample (Takahashi et al. 2023; Thalinger et al. 2021). Due
to the sensitivity of the employed molecular methods, great care has to be taken to
avoid sample contamination during the individual processing steps (Goldberg et al.
2016). Originally, detections via eDNA were only scored as the presence/absence of
data, but quantification of eDNA signals has recently evolved into a routine practice
for targeted approaches employing quantitative PCR or digital PCR assays (Butler
et al. 1994; Goldberg et al. 2016; Thalinger et al. 2021). A positive relationship
between read number and species abundance has also been confirmed in many case
studies for eDNA metabarcoding, although the complex nature of the amplification,
sequencing, and taxonomic identification processes still precludes the drawing of
general quantitative conclusions (Deagle et al. 2019; Tsuji et al. 2022).

In the context of forest connectivity, DNA-based methods can represent power-
ful tools. They can provide a detailed inventory of species present at a location,
ranging across the entire tree of life, and provide high-resolution data on spatial and
temporal changes in species distribution. By establishing comprehensive reference
databases (Weigand et al. 2019) and linking the detected taxa with their functional
roles, molecular methods can be suitable for the calculation of biotic indices and
ecosystem assessment (Brantschen et al. 2021; Dalongeville et al. 2022; Meyer
et al. 2020). Sampling of distinct microhabitats (e.g., the canopy (Aucone et al.
2023; Macher et al. 2023) or soil (Allen et al. 2023) and specific processes (e.g.,
decomposition or pollination (Evans and Kitson 2020) as well as testing for the
prevalence of pest species (Young et al. 2021) can further improve the resolution
along with the chances of detecting indicator species and rare taxa, thereby provid-
ing even more precise data for management decisions. A taxonomic and ecological
inventory of a location can thus be generated and used as a basis for tracking changes
over time with extremely high sensitivity. In the context of forest connectivity,
molecular methods provide a viable tool to monitor the use of individual habitats
(e.g., stepping-stone biotopes) and migrations. Additionally, the success of renatur-
ation and restoration measures can be efficiently monitored with DNA-based meth-
ods, as can changes in local biodiversity and ecosystem functioning induced by
climate change and forest management.
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Advantages and Disadvantages of Species
and Community-Based Approaches

Species monitoring offers advantages in terms of understanding and conserving
biodiversity by systematically and repeatedly collecting data. It allows researchers
and conservationists to detect long-term changes in species abundance or distribu-
tion, which can be crucial for informing effective management strategies (Moussy
et al. 2022). Moreover, monitoring facilitates the assessment of ecosystem health
and the impact of human activities, assisting in the implementation of adaptive man-
agement approaches. On the other hand, species monitoring may be resource-
intensive, requiring considerable time, effort, and financial investment, if monitoring
methods are not chosen appropriately. For example, certain species may be chal-
lenging to monitor conventionally due to their elusive nature or remote habitats,
potentially leading to incomplete data or limiting options to mono-temporal surveys
(Lohmus et al. 2018; Palmer et al. 2002). Here, the implementation of eDNA-based
techniques with their superior sensitivity and cost-effectiveness in these situations
is recommendable (Bohmann et al. 2014; Fediajevaite et al. 2021; Lampa et al.
2008). Furthermore, monitoring can cause disturbances to sensitive species or habi-
tats, necessitating ethical considerations, careful study design, and standardized
reporting guidelines (Pawlowski et al. 2018; Soulsbury et al. 2020). Despite these
challenges, the large-scale application of species monitoring may finally provide
researchers, policymakers, and managers with the much-needed high-resolution
datasets required for the conservation of forest connectivity and the implementation
of efficient management measures, thus far outweighing the drawbacks (Kéry and
Schmidt 2008).

Monitoring Genetic Diversity

Forest genetic monitoring describes and tracks changes in the population genetic
parameters of forest species over time by means of suitable indicators (Aravanopoulos
2011; Graudal et al. 2021). Despite the widespread use of population genetics and
genomics in conservation studies (Allendorf et al. 2022; Barnes and Turner 2016;
Taberlet et al. 2018), indicators of genetic diversity have only begun to be included
in international biodiversity monitoring standards during the past decade (Graudal
et al. 2014). This is even more surprising given that estimates of gene flow and
population genetic structure (Slatkin 1987) represent a direct measure of present
and past dispersal as well as functional connectivity between areas, especially when
coupled with demographic information (Lowe and Allendorf 2010). Intraspecific
patterns of genetic variation are the result of processes affecting population distribu-
tion and connectivity. Genetic indicators allow a long-term perspective on ecosys-
tem and species establishment (Thomas et al. 2014), thereby facilitating the
assessment of the future potential of species and ecosystem connectivity.

Efforts to improve landscape connectivity (e.g., via the creation of ecological
corridors for dispersal) have a direct impact on the conservation of genetic diversity,
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counteracting processes such as population isolation and reduction in the effective
population size including bottlenecks, inbreeding, random genetic drift, and local
population extinction (Young et al. 2000). The genetic monitoring of tree popula-
tions adapted to specific environmental conditions and designated as genetic con-
servation units (Lefevre et al. 2020; see also the EUFGIS portal, http://portal.eufgis.
org) can thus provide information on connectivity by means of population genetic
parameters. Importantly, the exchange of genetic material via gene flow (i.e., via
intraspecific pollen exchange or seed dispersal) or introgressive hybridization (i.e.,
gene exchange between species), likely facilitated by enhanced landscape connec-
tivity, is a means of transferring adaptive material (Leroy et al. 2020) and increasing
the potential of populations and species to adapt to future climatic conditions.
Assuming a stable rate of climate change, the potential of forests to adapt to future
climate conditions depends on (1) the existence of (adaptive) genetic diversity in
populations and (2) the possibility of sharing or exchanging (adaptive) genetic vari-
ants among populations via gene flow (Fady et al. 2016; Kremer et al. 2012).
Nevertheless, it is important to note that genetic connectivity can be both beneficial
and harmful in relation to the conservation of genetic units and tree breeding. Since
gene flow modifies the allelic composition of populations, it can introduce but also
remove adaptive variation from populations (Savolainen et al. 2007). For these rea-
sons, it is important to include and carefully evaluate genetic indicators and verifiers
in the methods and measures employed to improve ecological connectivity.

Approaches for Assessing Genetic Indicators

Genetic indicators that describe trends in species and population dispersal, the rate
of gene exchange, and the genetic state of examined populations can be used to
assess functional connectivity (Aravanopoulos 2016; Bajc et al. 2021; FAO 2014)
(Table 8.1). Landscape genetics (Holderegger and Wagner 2006) is the field that
combines population genetics and landscape ecology, explaining spatial genetic
variation in connection with landscape features (Balkenhol et al. 2015; Manel et al.
2003). Storfer et al. (2010) reported that among all landscape genetics studies pub-
lished by the time of their evaluation, almost 60% addressed research questions on
connectivity. In the first place, landscape genetics aims to understand which land-
scape features facilitate or impede gene flow.

Gene flow is a function of the population size and the migration rate of individu-
als between populations and is strongly determined by the respective mating system
(Bajc et al. 2021). It can be estimated using different statistics (Zheng and Janke
2018) and a variety of genetic markers ranging from microsatellites to next-
generation sequencing (NGS) data (see also Chap. 4 for further details). One major
limitation in the estimation of gene flow is the distinction between inferred and real-
ized gene flow in genomic studies (Colosimo et al. 2014), with the latter represent-
ing a more realistic estimator of present connectivity between populations. Trends
in population dispersal and connectivity can be further verified using estimates of
multi-locus population outcrossing rate (i.e., the proportion of outcrossed progeny
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Table 8.1 List of indicators and verifiers described in forest genetic monitoring and landscape
genetics that can be used to assess genetic connectivity between demes. Note that the same descrip-
tor (e.g., gene flow) is reported as an indicator or a verifier depending on the literature source
consulted. The table describes two key indicators that can be potentially used to track the progress
of a given target related to connectivity. Parameters that can be measured using genetic markers
within each indicator are reported as verifiers.

Genetic verifier Geographic  Reference literature
Indicator of (i.e., the measure of Period of scale of describing the
connectivity the indicator) assessment assessment  indicator
Trends in gene Gene flow Species- Local/ Aravanopoulos
exchange Outcrossing rate specific (e.g., regional (2011), (2016), Bajc
between Inbreeding every 10 years et al. (2021), FAO
populations in Spatial genetic in most tree (2014), Konnert et al.
relation to structure species) (2011), Manel et al.
landscape Population (2003)
features differentiation

(e.g., by means of

F)

Genetic drift
Trends in Effective Species- Local/
population population size specific (e.g., regional
genetic conditions (N,) every 10 years
that affect Population genetic  in most tree
synchrony diversity (e.g., species)
between allelic richness,
populations heterozygosity,

etc.)

produced by a population), inbreeding (i.e., the proportion of genetic variance of the
population contained in a single individual), genetic drift, strength of selection, and
measures of population genetic differentiation due to genetic structure (see
Table 8.1).

Population genetic parameters can also be used to assess population synchrony
(Table 8.1), which is defined as a positive correlation of the annual variation in
population trends (e.g., abundance exemplified by the effective population size, N.)
between separate populations (Blomfield et al. 2023). Population synchrony has
been shown to be a good proxy of functional connectivity (Powney et al. 2011),
even though some limitations of this approach in regard to long-distance dispersal
have been discussed (Blomfield et al. 2023). The effective population size is a key
parameter of genetic monitoring defined as the number of crossbreeding individuals
in a population that contribute genes to the next generation. Small values of N,
imply that stochastic processes (i.e., genetic drift) have a stronger effect on the
genetic composition of a population than selective processes, resulting in a higher
probability of inbreeding and, consequently, the two first processes lower a popula-
tion’s adaptability due to decreased amounts of genetic variation and low selection
coefficients. Thus, despite N, not being a direct estimator of connectivity, it is
strongly influenced by it and is fundamental to the understanding of connectivity
patterns.
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A variety of genetic markers can be used for assessing forest connectivity.
Popular markers used to monitor genetic variation in and between populations
include microsatellites, allozymes, SNPs, AFLP loci, mitochondrial and chloroplast
DNA, and the Y chromosome, with the latter three being particularly suitable for
estimating dispersal and gene flow due to their uniparental inheritance (Cruzan and
Hendrickson 2020; McCauley 1995).

Advantages and Disadvantages of Gene-Based Monitoring

The ever-decreasing cost of genotyping and steady improvement of bioinformatic
and statistical tools, most of which are open-source, makes the use of genetic moni-
toring increasingly simple and affordable for most of the research and governmental
institutions interested in monitoring forest connectivity. It is important to note that
different markers deliver information on genetic parameters constrained by their
own molecular features shaped, for instance, by their mode of inheritance and
recombination rate. Similarly, any statistical method is constrained by underlying
assumptions, which limits its usage to certain markers or study systems. For exam-
ple, assuming random mating excludes partially or wholly selfing organisms. Given
that natural populations mostly violate method assumptions, analytical approaches
should be validated by the use of simulations (Manel et al. 2003). Genetic monitor-
ing thus requires great technical expertise: the choice of which genetic markers and
statistical pipelines to use must be carefully evaluated at the start of a project.

The fieldwork as well as laboratory and data analyses required for genetic studies
in forest genetic monitoring is described in detail by Bajc et al. (2021) (Fig. 8.2).
Compared to conventional methods for assessing dispersal, such as mark-release—
recapture studies (Turlure et al. 2018; Zimmermann et al. 2011), genetic monitoring
is less time-consuming, requires less field work, and is less invasive with regard to
animal species. Several reviews propose a monitoring interval of around 10 years in
tree species (e.g., Aravanopoulos et al. 2015; Bajc et al. 2021) for most population
genetic verifiers (Table 8.1). This is likewise more feasible compared to other forest
genetic verifiers tracking parameters like regeneration abundance and reproductive
fitness, which require annual or biennial assessment. It is important to note that the
appropriate frequency of monitoring is species-specific depending on the specific
objectives and characteristics of the species being monitored like generation time,
life history traits, and conservation status. Overall, despite several genetic descrip-
tors, indicators, and verifiers being described or reported in individual studies and
guidelines (Table 8.1), a well-established reference framework for best practices is
still missing, as are unified databases collecting comparable data across countries,
even at the European level.
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Fig. 8.2 Two-part image showing (A) fieldwork: leaf material sampling from a tree of Quercus
pubescens for DNA extraction using a telescopic tree cutter and (B) loading of DNA extraction
samples for quality checking on an electrophoresis gel. Both images show the scientific staff of the
Austrian Research Centre for Forests. (Photos: BFW)

Outlook

The potential future of monitoring methods aimed at assessing connectivity in for-
est ecosystems is characterized by a combination of diverse approaches enabling a
comprehensive understanding of ecosystem dynamics and their connectivity.
Advancements in landscape monitoring technologies, including high-resolution sat-
ellite imagery and Light Detection and And Ranging (LiDAR), provide a detailed
portrayal of forest structures and their changes over time. These data facilitate the
identification of critical corridors and bottlenecks affecting species movement and
gene flow. Moreover, linking landscape knowledge with species-specific data or
population dispersal patterns offers insights into how individual species respond to
landscape alterations. This helps reveal behavioral patterns and allows the assess-
ment of species’ ability to traverse fragmented landscapes.

The widespread implementation of eDNA techniques coupled with high-
throughput sequencing enables rapid assessment of species presence and biodiver-
sity, especially for elusive or rare species that may be challenging to observe
morphologically. As DNA sequencing techniques become more accessible and
affordable, the utilization of genetic data offers deeper insights into genetic diver-
sity, population structure, and gene flow, ultimately allowing the evaluation of func-
tional connectivity. To harness the full potential of these monitoring methods, it is
essential to prioritize data sharing. The promotion of robust data-sharing platforms
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and open-access databases along with collaboration among researchers, practitio-
ners, and policymakers on a global scale becomes pivotal. This collective effort will
create a wealth of information for cross-disciplinary analysis, leading to more
informed conservation strategies.

Existing indicators must be subjected to rigorous evaluation to ensure they
encompass the dynamics of connectivity including genetic diversity, species inter-
actions, and landscape structure while remaining adaptable to shifting environmen-
tal conditions. In the face of the ongoing impact of climate change on forest
ecosystems, monitoring techniques will need to evolve. Dynamic models incorpo-
rating climate projections will help forecast connectivity in response to changing
climatic conditions. Potentially novel indicators need to be defined and tested to
determine the resilience and adaptive capacity of ecosystems in alignment with
existing policies and agreements such as the CBD’s Post-2020 Global Biodiversity
Framework. The science—policy interface will play a crucial role in shaping the
future of connectivity monitoring. Transparency and collaboration between scien-
tists, policymakers, and stakeholders are required to ensure that monitoring meth-
ods for connectivity are aligned with conservation goals and integrate the latest
scientific insights.
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Abstract

The current biodiversity crisis is primarily caused by habitat loss and fragmenta-
tion, which are exacerbated by global population expansion and land use intensi-
fication. The techniques applied to evaluate the impact of habitat loss and
fragmentation in forest ecosystems tend to measure changes in landscape pat-
terns induced by forest degradation. Earth observation techniques and remotely
sensed imagery are crucial tools for the large-scale monitoring of forest habitat
loss and fragmentation along with related changes in forest biodiversity charac-
teristics. Recently, the relevance of remote sensing for monitoring forest frag-
mentation has been further amplified by new satellite missions providing
up-to-date and high-resolution open-access data available on cloud computing
platforms. However, while satellite programmes like Landsat that employ remote
sensing techniques are suitable for large-scale monitoring of forest species dis-
tribution, they cannot capture micro-spatial variations, since their sensors cannot
disentangle forest heterogeneity. Finally, remotely sensed canopy-level informa-
tion alone cannot fully explain biodiversity patterns. Integration of remote sens-
ing and ground survey activities may help to overcome the limitations of these
techniques, providing solutions for designing and optimizing monitoring strate-
gies to tackle forest fragmentation and biodiversity loss in forest ecosystems.

Keywords

Remote sensing - Google earth engine - Habitat loss and fragmentation - Land
use change - Landsat

The Need to Monitor Forest Habitat Fragmentation

Human appropriation of the planet is restricting ecological connectivity for species
and ecosystems and thus causing habitat loss and fragmentation, which are consid-
ered key drivers of the current biodiversity crisis together with pollution, overex-
ploitation, and climate change (Bae et al. 2019; Muys et al. 2022). Habitat
fragmentation (also known as habitat subdivision or patchiness) means the breaking
apart of habitats into multiple patches (Fahrig 2003). It can compound habitat loss
by reducing the size of the habitat area, increasing edge effects, and causing habitat
isolation but it is also responsible for increasing habitat heterogeneity (but see the
debate between Fletcher et al. 2018 and Fahrig et al. 2019). Smaller habitat patches
can lead to population decline, as resources in smaller patches may be more limited.
In addition, habitat fragmentation increases the isolation of remaining habitat areas,
decreasing habitat connectivity which relates to the ability of species as well as
ecological resources and processes to move through landscapes (Lindenmayer
et al. 2008).

Habitat loss and fragmentation determine landscape degradation (Fahrig 2003),
which Fischer and Lindenmayer (2007) define as the gradual deterioration of habi-
tat quality. For example, logging is one of the main factors inducing degradation of
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intact forest habitats. Habitat degradation is a consequence of the impact of multiple
anthropogenic stressors and transforms landscapes by reducing the size and con-
nectivity of species’ habitats. Its effects become visible at different scales, and its
impact is not ubiquitous but rather species- and ecosystem-specific. The techniques
and approaches commonly employed to evaluate the impact of habitat loss and frag-
mentation on biological systems tend to measure changes in landscape patterns
induced by habitat degradation (Lindenmayer and Hobbs 2008).

Natural and anthropogenic disturbances affect habitat availability (amount) and
configuration (connectivity) for biodiversity in forest landscapes (Thom et al. 2017).
Timber harvesting as well as abiotic and biotic disturbances like windthrow, wild-
fires, insect outbreaks, diseases, pathogens, and drought may alter both the struc-
tural and functional connectivity of forest habitats, as well as the amount of habitat
available for biodiversity. For example, windthrow events can quickly create large
volumes of deadwood, while logging can isolate old-growth forest remnants. Forest
management is an example of disturbance that can have positive as well as negative
effects on the amount of connected habitat usable by forest species (Oettel and
Lapin 2021). For example, intensive forest management conducted in the form of
clear-cutting degrades the habitats of saproxylic species by reducing habitat amount
through the removal of deadwood substrates on which they complete their life cycle
as well as habitat connectivity through the creation of forest gaps impeding their
dispersion (Monkkonen et al. 2014; Mazziotta et al. 2023; Oettel et al. 2023). On
the other hand, close-to-nature forest management (Bauhus et al. 2013)—for exam-
ple, continuous cover forestry by means of selective logging (Peura et al. 2018)—
improves habitat quality for species dwelling in semi-natural forests. The creation
of forest gaps by selective logging increases habitat heterogeneity through the
removal of large logs in the otherwise homogeneous mature forest, creating habitat
for species developing in standing and lying deadwood associated with sunny
microclimatic conditions. In doing so, selective logging also increases habitat con-
nectivity by creating a heterogeneous forest matrix that facilitates the dispersion of
saproxylic species associated with sunny microclimate. In both cases, forest man-
agement is changing the structure of the landscape by altering the amount of habitat
available and the connectivity of suitable habitat patches for different species
(Nordén et al. 2013; Undin et al. 2022). However, species that have declined due to
forestry mostly require maintaining large living and dead trees, which cannot be
preserved by continuous cover forestry alone. A mosaic of different management
regimes may provide complementary ways to maintain valuable and connected hab-
itats for forest species (Koivula et al. 2025; Rautio et al. 2025).

Since habitat loss and fragmentation induced by natural and anthropogenic dis-
turbances take place on the level of the entire landscape rather than that of individ-
ual stands, tackling these changes requires earth observation techniques like remote
sensing that can monitor variations in the characteristics of forests and their spatial
patterns on a broad scale (Francini et al. 2022, 2023a) (Fig. 9.1).
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Fig. 9.1 ESA Sentinel—2 (European Space Agency)

The Role of Remote Sensing in Habitat
Fragmentation Monitoring

Habitat loss and fragmentation are historically monitored by means of ground sur-
veys. Field analysis and detailed information acquisition are effective strategies for
collecting exhaustive and comprehensive information about these two drivers of
landscape degradation. On the other hand, ground surveys are subject to several
shortcomings. First, acquiring data on the ground is time-consuming and conse-
quently expensive. As a result, such data is acquired with long remeasurement inter-
vals and only from small areas, limiting its effectiveness for estimating forest
changes quickly and precisely (Zald et al. 2016). This is a crucial issue with regard
to monitoring the rapid forest changes induced by global warming and frequent
anthropogenic disturbances. Second, ground data can be aggregated to provide esti-
mates, but it cannot be employed alone to produce detailed, spatially explicit maps
useful for habitat loss and fragmentation assessment.

Remote sensing offers an effective alternative to ground surveys for mapping the
processes of habitat loss and fragmentation. For example, active and passive remote
sensing data can be used to obtain land cover and forest disturbance maps and to
track changes in forest cover and health status (Hao et al. 2019; Francini et al. 2022).
Landscape metrics such as patch size, shape, and connectivity are numerical indices
quantifying landscape patterns (McGarigal 2015) and can be calculated from these
maps to quantify habitat fragmentation (Liu et al. 2021). In the meantime, photo-
synthetic activity indices (e.g., the Normalized Difference Vegetation Index, NDVI)
can be calculated from remotely sensed optical imagery to monitor changes in



9 Monitoring Habitat Fragmentation and Biodiversity in Forest Ecosystems 175

vegetation status and assess habitat condition and degradation over space and time
(Guo et al. 2019).

In addition, remote sensing provides valuable information for guiding conserva-
tion and land management efforts (Tayyebi et al. 2020). For example, remote sens-
ing data can be used to identify areas where conservation efforts are most needed,
track the effectiveness of conservation interventions, and prioritize areas for habitat
restoration (Cord et al. 2018; Schwieder et al. 2019).

The relevance of remote sensing for monitoring habitat loss and fragmentation
has been further amplified by three recent innovations and advancements. First, new
satellite missions such as Sentinel, PlanetScope, and Pléiades Neo play a crucial
role in this context by providing new high-resolution data with shorter revisitation
times compared to previous missions. This is a key advantage in the context of
highly fragmented regions where the pixel sizes of medium-resolution imagery may
not be small enough to reveal subtle habitat changes. Second, several satellite mis-
sions have begun to provide data under free open-access licences (e.g., Sentinel-2,
Landsat). The third factor is the development of cloud computing platforms includ-
ing Sentinel Hub, Open Data Cube, SEPAL, JEODPP, pipsCloud, OpenEO, and
Google Earth Engine (Gomes et al. 2020). Combining the high-resolution open-
access data available from new satellite missions with cloud computing platforms
enables the application of complex algorithms detecting changes across very large
areas (Woodcock et al. 2008). Among the mentioned cloud computing platforms,
Google Earth Engine (GEE) is particularly suitable for monitoring habitat fragmen-
tation at large scales. GEE combines a catalogue of satellite imagery and geospatial
datasets with planetary-scale analysis capabilities (Gorelick et al. 2017) for aspects
including forest change assessment (Hansen et al. 2013) and surface water extent
and dynamics (Pekel et al. 2016). GEE has three key strengths compared to the
other mentioned cloud computing platforms: The first is its flexibility allowing
users to apply different algorithms to the data and use high-level programming lan-
guages and high-performance computing. The second is scientific reproducibility
together with storage and process scalability. The final advantage is its processing
performance, which can be scaled by adding more resources without users needing
to alter their approach or code.

GEE has already implemented several algorithms relating to forest disturbance
detection and exploiting the analysis-ready satellite data: (i) LandTrendr (Kennedy
et al. 2012, 2018), (ii) Continuous Change Detection and Classification (CCDC;
Zhu and Woodcock 2014), (iii) Exponentially Weighted Moving Average Change
Detection (Brooks et al. 2014), (iv) Vegetation Change Tracker (VCT; Huang et al.
2010), and (v) the Verdet forest change detection algorithm (Hughes et al. 2017).
Although some of these algorithms can use imagery from different satellite mis-
sions, they were all originally designed to work with Landsat data. Zhu (2017) and
Francini et al. (2020, 2021) provide comprehensive reviews of these temporal seg-
mentation algorithms, and a brief overview of the most commonly used remote
sensing approaches for monitoring forest disturbances is provided in Box 9.1.
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Box 9.1 Key Remote Sensing Approaches to Monitoring Changes in

Forest Cover

During the past decade, the two most commonly used remote sensing tech-
niques worldwide with the capability to monitor changes in forest cover have
been LandTrendr (LT) (Kennedy et al. 2010) and the Global Forest Change
(GFC) data set (Hansen et al. 2013).

LT consists of a temporal segmentation approach that predicts changes by
identifying breakpoints in trajectories of a photosynthetic index (like NDVI)
calculated over several consecutive years from a Landsat imagery time series.
It requires calibration of input parameters for each ecosystem (Hudak et al.
2013; Fragal et al. 2016; Yang et al. 2018). Because LT is based on yearly
time-series analyses, accuracy decreases for extremes of the time series and
for near past detection applications.

By contrast, GFC data is constructed using more than 600,000 Landsat
scenes and a hierarchic classifier based on recursive partitioning. The data
consists of annual global maps of tree cover extent, loss, and gain. GFC was
used together with aerial images to analyse harvested sites in mountainous
boreal forests in Norway, but up to 30% omission errors were reported (Rossi
et al. 2019). GFC has also been proven inaccurate in Mediterranean coppice
forests in Italy, with an average precision of about 50% (Giannetti et al. 2020).
Despite these shortcomings, GFC was recently used by Ceccherini et al.
(2020) to assess the temporal trend of forest logging in Europe; however,
several limitations were discovered by Palahi et al. (2021).

Further remote sensing algorithms include Continuous Change Detection
and Classification (Zhu and Woodcock 2014), Breaks for Additive Season and
Trend Monitor (Verbesselt et al. 2012), and Space-Time Extremes and
Features (Hamunyela et al. 2017), most of which are likewise Landsat-based
algorithms at 30-meter spatial resolution. Recently, new methods have been
implemented for predicting forest disturbances at finer scales using Sentinel-2
and PlanetScope imagery (Francini et al. 2021, 2022).

Predictions of forest biomass loss due to disturbance have been possible
through the combination of maps based on remote sensing with data from the
Global Ecosystem Dynamics Investigation (GEDI) sensor (Francini et al.
2023a). Finally, remote sensing data has proven effective not just for forest
disturbance monitoring but also for the detection and estimation of afforesta-
tion areas (Cavalli et al. 2022). Measuring afforestation rate is a key aspect
considering that forest area is increasing in several world regions and that
afforestation represents the main land cover change in Europe (Palmero-
Iniesta et al. 2021).
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Remote Sensing to Monitor the Impact of Habitat
Fragmentation on Biodiversity

The rapid pace at which habitat loss and fragmentation occur worldwide is one of
the main causes for the fast decline in species populations. In the 2022 ITUCN global
Red List, 28% of all assessed species were classified as threatened with extinction,
belonging to the critically endangered, endangered, or vulnerable categories (wWww.
iucnredlist.org). Within this context, biodiversity monitoring is a major concern in
forest ecosystems, as they cover a third of the world’s total land area and host a high
species diversity amounting to three quarters of all terrestrial plant, fungus, and
animal species (Forest Europe 2020).

In order to guide policies and management strategies for biodiversity conserva-
tion, regular, reliable, and standardized data on the state of biodiversity is required.
Since the term ‘biodiversity’ encompasses the biological diversity of organisms in
terms of composition, structure, and functionality all the way from genes to ecosys-
tems, hundreds of variables can be measured to study it (Muys et al. 2022). The best
indicator to measure biodiversity within an ecosystem, for example, would be the
measurement of species diversity. However, since it is impossible to record all spe-
cies present in an area, the use of readily observable, measurable, and quantifiable
proxies and indicators is essential (McElhinny et al. 2005; Ozdemir et al. 2018).

Historically, the most commonly used indicators for assessing biodiversity fall
into two main groups: habitat-based and taxon-based indicators (Paillet et al. 2024).
The former represent environmental and structural variables considered to be prox-
ies of the richness, composition, or diversity of species, while the latter are linked to
the presence or abundance of indicator species (Lindenmayer et al. 2014). Although
biodiversity monitoring using taxon-based approaches is more reliable for describ-
ing local species patterns, these monitoring methods still rely on traditional sam-
pling methods and plot-level ground surveys. This means that they remain costly
and time-consuming, especially when applied to large areas. Moreover, they require
alot of human resources and can easily be biased by human error, even when experts
are involved in species identification (Wang and Gamon 2019). Among the habitat-
based indicators, the monitoring of forest attributes related to forest structural com-
plexity is certainly pivotal (Cosovié et al. 2020). These attributes include variability
in canopy cover, tree diameter, tree height, and understory vegetation, which sup-
port the occurrence of diverse ecological niches for wildlife (Zellweger et al. 2013).
Multiple studies have highlighted the existence of a link between forest structure
and several groups of species (see Zeller et al. 2023 for a review), including vascular
plants (Burrascano et al. 2008), bryophytes (MadZzule et al. 2012), lichens (Moning
et al. 2009), and wood-inhabiting fungi (Mazziotta et al. 2016) (Ruokolainen et al.
2018), birds (Herniman et al. 2020), insects (e.g., Parisi et al. 2023, 2024), and bats
(Vogeler et al. 2022). For example, using a database of forest stands in southern
Sweden, Hedwall et al. (2019) have found that the cover and species richness of
understory vascular plants increased with an increasing proportion of birch and
decreased with increasing forest density, while the cover of bryophytes decreased
with an increasing proportion of birch and increasing forest density.
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It is in this context that remote sensing can play a fundamental role in assessing
habitat-based indicators of forest biodiversity at large scales (Fig. 9.2). Remote
sensing represents a powerful and efficient instrument for monitoring forest charac-
teristics and can efficiently support monitoring by providing open-access, up-to-
date, and repeatable data that can be used to estimate and predict the abundance and
diversity of different taxonomic groups at various scales of time and space (Parisi
etal. 2022, 2024). One of the most important advantages of remotely sensed habitat-
based indicators is that they are mapped ‘wall-to-wall’, meaning that they offer a
continuous biodiversity assessment across the entire forest landscape (Ozdemir
et al. 2018). The use of remote sensing techniques in biodiversity monitoring and
mapping has only become more popular during the last three decades, with the first
scientific studies regarding the topic emerging in the 1990s (Wang and Gamon
2019). Over this time, a variety of remote sensing sources ranging from passive—
i.e. satellite imagery—to active methods like Light Detection And Ranging (LiDAR)
have been developed and implemented.

Early uses of remote sensing in biodiversity assessment included landscape or
habitat mapping through optical data (Wang and Gamon 2019). The sensors of the
Sentinel-2 (ESA Copernicus programme) and Landsat (USGS/NASA) missions

Fig. 9.2 Remote sensing facilitates biodiversity assessment by monitoring forest characteristics
(Francesco Parisi)
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allow the calculation of spectral indices (Kacic and Kuenzer 2022). In particular,
vegetation indices such as NDVI offer information about canopy cover and tree spe-
cies diversity (Arekhi et al. 2017). This data can be used for diversity monitoring
following the spectral variation hypothesis, according to which greater spectral het-
erogeneity in an image corresponds to greater tree species richness on the ground
(Ozdemir et al. 2018). For example, Parisi et al. (2023) have analysed time series for
Sentinel-2 harmonic metrics to relate changes in NDVI remotely sensed via Landsat
images with biodiversity indices for the taxonomic groups of beetles, birds, and
lichens (Fig. 9.3). Graf et al. (2005) made use of LiDaR remote sensing to evaluate
the availability of habitat of a forest grouse species (capercaillie) at multiple spa-
tial scales.

Moreover, the implementation of LiDAR systems (Fig. 9.2) has expanded the
range of data that can be remotely sensed (Wang and Gamon 2019). Especially in
forest ecosystems, laser technology is a powerful tool for biodiversity monitoring as
it can collect information and metrics regarding vegetation structure (Moudry et al.
2023). Recently, Airborne Laser Scanning (ALS) (Fig. 9.4) performed using LIiDAR
sensors aboard aircraft has enabled simultaneous detection of both vegetation
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Fig. 9.3 Remote sensing supports detection of biodiversity patterns. Correlations between biodi-
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Fig.9.4 The term LiDAR is an acronym for Light Detection And Ranging and it refers to sensors
used to capture point clouds from both static and mobile methods (https://geolabforest.com/)

Fig. 9.5 An example of temporal series from Remote sensing via Landsat-7. Number of per-pixel
valid observations per analysis tile are reported (Francini et al. 2023)

biochemistry and structure, thus becoming the primary method for collecting accu-
rate terrain and vegetation data across large areas (Moudry et al. 2023).

Despite the important contribution of remote sensing to the habitat-based moni-
toring of biodiversity, Sabatini et al. (2016) found that indicators such as stand
structural heterogeneity alone do not perform well for estimating overall landscape
biodiversity. This is because different taxa respond to a particular set of structural
variables in different ways due to their habitat requirements (Burrascano et al.
2023). Complementary use of habitat-based and taxon-based approaches is there-
fore necessary to enable comprehensive assessment of the status of biodiversity
(Blasi et al. 2010; Burrascano et al. 2018) (Fig. 9.5).

In forest ecosystems, few existing studies have focused on combining measure-
ments of habitat-based indicators based on remotely sensed vegetation indices with
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multi-taxon biodiversity assessments (Vogeler et al. 2022); instead, most research
has been limited to individual taxonomic groups, such as vascular plants (Moudry
et al. 2023), birds (Alaniz et al. 2021), and butterflies (de Vries et al. 2021).

Limitations of Monitoring via Remote Sensing
and the Way Forward

To summarize, we have shown that remote sensing is an effective technique for
detecting processes of landscape fragmentation as well as for evaluating changes in
forest landscapes and consequent alterations to biodiversity patterns. It can be used
at different spatial scales, is highly repeatable, and facilitates monitoring purposes
as data can be easily compared over time. The recent advancements in terms of
availability of high-resolution satellite images and global Landsat images (e.g.,
NASA Geocover dataset; Tucker et al. 2004) enable estimations of productivity
using vegetation indices while simultaneously examining the relationships between
these estimates and biodiversity indicators (Turner et al. 2015).

Despite the excellent opportunities offered by remote sensing and the long
Landsat time-series data in particular, certain limitations should also be considered.
First, the spatial resolution of Landsat is not adequate for capturing micro-spatial
variations in the distribution of wood-dwelling species, which have poor dispersion
capacity, making the Landsat data suitable only for monitoring biodiversity at large-
scale resolution. Second, due to the well-known saturation effect of multispectral
data, the Landsat sensor is not sensitive to multilayer canopy cover, dense forests,
or complex topographic features (Chirici et al. 2020; Vangi et al. 2021; D’ Amico
et al. 2022) affecting NDVI values. Third, satellite data cannot fully explain biodi-
versity patterns since it only provides canopy-level information.

The integration of remote sensing approaches and ground monitoring activities
within forest monitoring guidelines may overcome these limitations, helping to
design and optimize monitoring strategies to tackle forest fragmentation and biodi-
versity loss in forest ecosystems. Although remote sensing data cannot replace field-
work or identify individual species along with their rarity and composition, we
assume that processing and analysing such data will become highly affordable in
the future given the valuable insights provided by these images. In this regard, the
availability of the GEE cloud platform allows an unprecedented view of forest areas
worldwide.

In conclusion, despite the abovementioned limitations, the provided examples
showcase that remote sensing data has great potential for supporting conservation
planning and decision making in forest ecosystems. Remote sensing can help to
identify hotspots for biodiversity and ecosystem services (de Araujo Barbosa et al.
2015) and even detect climate change refugia (Dubinin et al. 2018), thereby provid-
ing practical support for cost-effective biodiversity monitoring and nature-based
forest management in complex silvicultural systems.
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Abstract

Habitat quality and quantity play a vital role in maintaining ecosystems and pop-
ulations of target species, and a deep understanding of features and metrics
within the landscape is required to determine them. This chapter reviews the
complexities involved in the assessment of these features and metrics to support
evidence-based conservation strategies and long-term ecosystem sustainability.
Evaluating habitat quality is related to structural diversity, management, natural
disturbance legacy, and species richness and diversity as well as the presence of
indicator or umbrella species. Generally, complex stand structures and the abun-
dance of veteran trees and deadwood indicate ecosystems with higher levels of
overall biodiversity and stability. The non-linear relationship between population
viability and habitat size emphasizes the need for landscape-level management.
Viability decreases significantly when the ecological capacity for a minimum
viable population is exceeded, and recognizing this tipping point is therefore
crucial for evidence-based conservation. This means that habitat size assessed as
a single variable is insufficient to determine habitat quality, and a wider range of
metrics like structural diversity and connectivity should be considered in popula-
tion management at the landscape level.

Keywords

Island biogeography - Landscape ecology - Forest management - Connectivity -
Community ecology - Structural diversity - Population viability

Introduction

A habitat is a specific area or environment representing a physical location wherein
a particular organism or community of organisms naturally resides—for example, a
forest area in which a community of living organisms thrives. It includes the sur-
rounding abiotic (such as temperature, humidity, and soil type) and biotic factors
(such as other species, food sources, and predators) that provide necessary resources
and conditions for survival, growth, and reproduction. Habitats can vary widely in
size and complexity, ranging from small tree cavities to vast ocean ecosystems or
terrestrial forests. Each habitat has its distinct characteristics and supports a unique
set of organisms that have adapted to its specific conditions. From the viewpoint of
conservation biology, an entire forest area covered by various communities of living
organisms may be referred to as a habitat. Smaller structures known as mesohabitats
are physiographic or physiognomic features of habitats commonly comprising clus-
ters of microhabitats, which are the smallest landscape unit making up the regional
landscape mosaic (Vitt and Belland 1997). For example, in an oak forest habitat,
streams, rocks, and trees are mesohabitats while logs, stumps, and tree cavities are
microhabitats (Fig. 10.1). Smaller species and their communities are more affiliated
with meso- and microhabitats, allowing characteristics of these smaller habitat
structures to be used in their assessment.
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Fig. 10.1 Nested occurrence of meso- and microhabitats within a habitat. A habitat (Fagus syl-
vatica mountain forest) is composed of mesohabitats (red frames) like streams, boulders, logs, and
trees; each individual mesohabitat (e.g., a tree) can include microhabitats (smaller images, blue
arrows)—e.g., (a) cavity nests, (b) trunk-base rot holes and epiphytes, or (c¢) dendrotelmata (tree
hollow accumulating rainwater)

Assessing forest habitats involves both quantitative and qualitative approaches.
The quantitative approach rooted in landscape ecology focuses on evaluating habi-
tat extent, shape, and spatial relationships within the broader landscape matrix.
While this approach provides valuable information on the presence of habitats, it
does not capture the qualitative characteristics necessary to determine their suitabil-
ity for specific species or organism guilds.

This chapter delves into the features and metrics used to evaluate both habitat
quality and quantity. By examining the evolving understanding of habitats and their
conservation, it aims to explain the complexities involved in assessing and manag-
ing these vital ecosystems. Understanding the features and metrics related to habitat
quality and quantity is crucial for effective conservation strategies and the long-term
sustainability of natural environments. In order to inform decision-making with
regard to the protection of valuable habitats and the enhancement of ecosystem con-
nectivity, several descriptors of habitat quantity and quality will be introduced, and
their respective relationships and conservation implications described (see
Table 10.1).
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Table 10.1 Quantitative indicators of habitat quality and quantity

Parameter
Habitat size

Habitat shape

Edge effects

Temporal
dynamics

Neighborhood
characteristics

Isolation

Connectivity

Spatial
heterogeneity

Indicator
Size of patch

Length of perimeter,
shape indices (e.g.,
perimeter—area ratio,
circularity, perimeter
expansion index)
Fraction of edge zone,
related to habitat area,
level of fragmentation
(e.g., edge distance, edge
density)

Microhabitat lifespan,

decomposition rate, stand

age, rotation age

Proportion of particular
types of habitats in a
buffer around the given

habitat, habitat suitability
(from species distribution
models) within the matrix

Shortest distance to next
habitat within landscape
matrix, shortest distance
to source population,

presence of biogeographic

(scale-relevant) barriers
Number and quality of
corridors or stepping
stones, level of gene flow
between patches

Stand age, basal area,
dead tree volume and

diameters, stand structure

index, diameter structure

Significance

Positively related to
population size, viability,
and species richness

Modifies area effects on
populations and
communities, determines
edge effect sizes

Ecotone area, where
conditions typical of
habitat transition into
conditions typical of
landscape matrix,
decreased habitat quality
and population size
Number of generations,
ability to complete the
life cycle of a generation,
habitat stability

Matrix permeability,
colonization by species
from other habitats,
alteration of

environmental conditions,

connectivity

Dispersal limitation,
colonization probability,
population genetic
diversity

Overcoming negative
effects of isolation

Habitat and microhabitat
availability, connectivity
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(continued)
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Table 10.1 (continued)

Parameter Indicator Significance References
Disturbance Presence of pit-and- Niche availability for (re) (Clarke et al. 2015;
legacy mound structures, colonization, habitat Czortek et al. 2018;
charcoal and fire scars, stability Godziek and Pawlik
landslides, regeneration 2023; Johnstone et al.
clumps 2010; Marozas et al.
2007)
Management  Number of stumps, stand Niche availability, habitat (Chabrerie et al. 2008;
legacy structure (diameter quality, niche persistence Oettel and Lapin
distribution), clear-cut 2021; Orczewska et al.
area, mean clear-cut area, 2019)
proportion of stand
removal

Quantitative Features of Habitat

Habitat size is the basic metric of habitat quantity within a landscape matrix
(Table 10.1 and Fig. 10.2). For forest habitats, it refers to the area covered by a par-
ticular forest type and determines population sizes (Banul et al. 2018; Hanski 1997).
This relationship between species abundance and habitat size has to do with the
space required by each individual (Wesotowski 2007), respectively, by communities
(Dengler et al. 2009; Godefroid and Koedam 2003). Species sensitivity to habitat
size is greater in higher trophic levels, as its occurrence is determined by prey avail-
ability (Gibb and Hochuli 2002). Habitat size matters not only for forest habitats but
also for meso- and microhabitats (Fig. 10.1). Microhabitat size determines the num-
ber of species (Weibull and Rydin 2005) as well as the probability of species occur-
rence, even in microhabitats as small as oak acorns (Myczko et al. 2018).

The size of a habitat and its spatial arrangement in the landscape matrix play a
crucial role in determining its ability to sustain a specific number of individuals,
thereby influencing whether it can serve as a population source or sink. The concept
of source and sink populations stems from population ecology and refers to the
dynamics of individuals moving between different habitat patches (Furrer and
Pasinelli 2016). Habitat size directly impacts the availability of resources such as
food, shelter, and breeding sites within a given area. Larger habitats generally have
greater resource availability and can thus support larger populations of organisms.
Consequently, such habitats are more likely to accommodate source populations
producing a surplus of individuals that can disperse and contribute to other habitats
within the landscape. On the other hand, smaller habitats with limited resources
may only support a smaller number of individuals. These habitats may act as popu-
lation sinks, meaning that they rely on immigration from source populations to
maintain their population size. The capacity of a habitat to sustain a particular num-
ber of individuals is influenced not only by its size but also by factors such as habitat
quality, fragmentation, and connectivity. This is related to matrix permeability, i.e.
ability of the matrix to be penetrated by a target species. Although a matrix cannot
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Fig. 10.2 Spatial arrangement of forest areas in various metrics: (a) linear woodland patches
along streams in the Masai Mara savanna (Kenya) with linear shapes resulting in a large proportion
of edge zone; (b) medium and large forest complexes in Beskid Niski (Poland); (¢) forest island in
a reservoir created in Khao Sok National Park (Thailand), an example of an impermeable matrix;
(d) woodland patches in Babki Forest Inspectorate (Poland) consisting mostly of edge zone despite
their round shape, due to their small size

serve as a habitat for a particular species, its properties determine whether it is a
barrier or not to species movement. This can be related to either abiotic (e.g., insola-
tion or flooding) or biotic conditions (e.g., shelter by vegetation or predator activ-
ity). High-quality habitats with abundant resources and suitable conditions can
support larger populations even in smaller areas, while poor-quality habitats may
offer limited capacity regardless of their size (MacArthur and Wilson 2001).

In addition, the population size of a habitat affects its genetic diversity (Prober
and Brown 1994; Tsuzuki et al. 2022) and therefore determines the minimum viable
population, i.e. the minimum number of individuals needed to sustain a population
for a certain time (Shaffer 1981). Smaller populations are more exposed to three
random fluctuations: 1) demographic, related to the probability of population decline
if a new generation is of a single sex; ii) genetic, connected to a higher probability
of lethal alleles and homozygotic recessive genes occurring; and iii) environmental,
relating to natural catastrophes and the variability of environmental conditions (e.g.,
cold winters or dry summers). The relationship between population viability and
habitat size is non-linear, however, decreasing drastically beyond the threshold of
ecological capacity for the minimum viable population.
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Habitat area and shape determine the ratio between core and edge zones
(Fig. 10.2) within a habitat (Banul et al. 2018). In forests, the core zone represents
conditions typical of the forest interior, related to the presence of two biologically
active surfaces (the soil with the understory and the canopy). The canopy layer
intercepts solar radiation and precipitation (Breuer et al. 2003; Jagodzinski et al.
2019; Niinemets 2010), buffering temperatures and humidity (von Arx et al. 2012;
Zellweger et al. 2020) and thereby affecting all dependent organisms (De Lombaerde
et al. 2020; Jagodzinski et al. 2018; Mueller et al. 2016) as well as moderating eco-
system functioning (Govaert et al. 2021; Hobbie et al. 2010; Rawlik et al. 2019).
Edge zones significantly differ from the interior in terms of greater light availability
(Niinemets 2010), less stable microclimate (M. Schmidt et al. 2017, 2019), and a
more diverse structure with lower tree heights, higher density, and higher shrub
cover (Meeussen et al. 2020; Wyka et al. 2023). As a transitional zone between for-
est and non-forest vegetation, forest edges frequently feature an outer belt of shrubs
and tall herbs (Ellenberg 1988; Govaert et al. 2020) hosting generalists and special-
ists, with an increasing alpha diversity (Wesotowski et al. 2022) and forest under-
story vegetation (Govaert et al. 2020).

Forest fragmentation leads to a decrease in total forest area accompanied by an
increase in edge zones and a decrease in core zones required by forest specialists
(Riitters et al. 2016). Forest edges can also affect the reproductive success and
behavior of species (Jedrzejewski et al. 1994). For example, edges are suboptimal
habitats for forest specialists (Babak and He 2009). The shape of a forest habitat
directly influences the proportion and distribution of core areas as relatively undis-
turbed regions of the forest and edge areas (Banul et al. 2018; Ewers and Didham
2005). Various metrics are employed to quantify habitat shape, most of which are
based on the level of perimeter complexity as well as directional evenness
(Hesselbarth et al. 2019). Forest habitats with regular shapes and straight borders
have a higher proportion of core zone and less edge zone. The latter usually com-
prise a zone deep by a one stand height. Increasing complexity or length of the habi-
tat border increases the area subject to edge effects (Cherkaoui et al. 2009; Ewers
and Didham 2005). This means that two habitats with the same area, with one hav-
ing an elongated shape and the other a round shape, can be occupied by different
communities (Brosi et al. 2007; Cherkaoui et al. 2009). The effect of habitat shape
decreases with greater habitat area since the absolute area of the interior zone
increases, making it large enough to allow the corresponding species to thrive even
in the case of a high proportion of edge zone (Banul et al. 2018).

Temporal patterns of habitats are also crucial determinants of their biota
(Fig. 10.3). Succession dynamics shape the replacement of generalists by specialists
(Connell and Slatyer 1977; Walker and Chapin 1987), which is related to specific
forest conditions including microclimate and light availability (Dzwonko 2001;
Zellweger et al. 2020). This is especially important for dispersal-limited specialists,
which struggle to quickly recolonize deforested sites (De Frenne et al. 2011;
Orczewska 2009). Stand age, frequently used as a metric of habitat age, determines
the diversity of numerous groups of organisms (del Moral and Wood 1993; Fritz
et al. 2009; Majer et al. 2007; Prach et al. 2001). Furthermore, it modifies the
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Fig. 10.3 Veteran trees and deadwood are important habitats for numerous organisms. (a) An
enormously large Fraxinus excelsior, protected in Biatlowieza Forest Strict Reserve (Poland); (b) a
large Quercus robur, remnant of a riparian forest, is conserved as a sacred tree in the orthodox
monastery at Jabteczna (Poland); two large dead logs are historical trees from Biatowieza Forest:
(c) Jagietto’s oak (Quercus robur), estimated to be 450 years old and knocked over by wind in 1974
and (d) Scots pine (Pinus sylvestris) used as a hive, with remnants of the hive entrance, a tree died
before 1888 when bee hiving was abandoned

differentiation of spatial structure as well as being crucial for the development of
specific meso- and microhabitats (Biitler et al. 2020; Snéll et al. 2004). Temporal
patterns are also observed in the colonization of meso- and microhabitats—e.g.,
decomposing litter (Urbanowski et al. 2018) or perennial fungal fruiting bodies
(Gdula et al. 2021). Lifespan is crucial for certain species colonizing these habitats.
For example, wood decomposes at mass loss rates of 28.2%, 6.3%, and 3.3% per
year in tropical, temperate, and boreal biomes, respectively (Seibold et al. 2021),
which affects the attractiveness of the habitat for particular species. Similarly, non-
excavated holes used as nests by birds have a median lifespan of 12 years, while
those excavated by woodpeckers last only 7 to 10 years (Wesotowski 2011, 2012),
thus affecting temporal availability for birds. Furthermore, tree species with loose
and easily shedding bark host fewer epiphytes than those with more persistent bark
(Barkman 1958; Jagodzinski et al. 2018).
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Qualitative Features of Habitats

Quality refers to the structural and functional features of habitats that support biodi-
versity and ecosystem processes, improving the persistence and growth of target
species populations (Hodgson et al. 2011). These factors are species- or guild-
specific, depending on individual ecological requirements (Austin 2013; Carroll
etal. 2011; Oksanen and Minchin 2002). For this reason, it is crucial to define target
groups of organisms and relate habitat quality to their requirements. Many global
environmental changes are common processes that reduce habitat quality for vari-
ous groups of organisms, like pollution, fragmentation, biological invasions, or
overharvesting. Moreover, numerous groups of organisms are not sufficiently rec-
ognized or their identification requires considerable labor effort and expertise
(Kiebacher et al. 2016). For this reason, general descriptors of habitat quality linked
to greater diversity of specific taxa and umbrella species are utilized as metrics to
measure the effectiveness of conservation efforts. The presence and viability of
indicator species within a habitat are predictors for the ecological integrity and suit-
ability of the environment for a range of other species. By focusing conservation
efforts on protecting and managing habitats that support umbrella species (Roberge
and Angelstam 2004)—that is, widely known species sharing ecological require-
ments with many other less recognized species—numerous other species with the
same ecological requirements can indirectly be safeguarded. By linking information
about the presence and abundance of these species with general descriptors of habi-
tat quality, conservationists can obtain insights on the overall health and biodiver-
sity of studied habitats, evaluate the success of conservation initiatives, and make
informed decisions regarding the management and protection of habitats. Metrics
for habitat quality enable targeted actions to preserve biodiversity and maintain eco-
logical balance (Oettel and Lapin 2021). The former is based on niche availability
and the assumption that the presence of conditions supporting particular taxa is
crucial for maintaining their populations. This can be expressed by various indica-
tors relating to nutrient availability, regeneration niches, biodiversity, structural
diversity, or management legacy and intensity (Oettel and Lapin 2021). By contrast,
the concept of umbrella species (Roberge and Angelstam 2004) assumes that moni-
toring and conserving easily identifiable and often popular species can be used as a
proxy for wider groups of species with similar ecological requirements. This
approach allows the conclusion that forest habitat quality determines management
thresholds (Oettel and Lapin 2021) or predicts guild responses to climate change
(Wierzcholska et al. 2020).

Trees are foundational elements of a forest ecosystem (Ellison et al. 2005) that
determine its functioning. Owing to their biomass dominance and longevity, trees
regulate the rate of matter cycling via species-specific chemical composition and
traits of litterfall (Godoy et al. 2010; Hobbie et al. 2006; Horodecki et al. 2019), as
well as via solar energy access to the soil and understory (Jagodzinski et al. 2019;
Niinemets 2010). Dominant tree species thus determine the composition of depen-
dent organisms as well as the structure of microhabitats. For example, wood density
and chemical composition affect the lifespan of deadwood and the succession of
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insects, fungi, and bryophytes (Checko et al. 2015; Stursova et al. 2014) while bark
water capacity, pH, and tree lifespan affect the composition of epiphytic bryophytes
and lichens (Barkman 1958; Jagodzinski et al. 2018; Lubek et al. 2020). As a result,
habitat quality is largely determined by the dominant tree species, and the presence
of geographically alien tree species can alter habitat suitability for native species
(Dyderski and Jagodzinski 2021; Garcia et al. 2023; Wohlgemuth et al. 2022).
Similarly, planting native tree species mismatched to local soil conditions can also
affect biodiversity by decreasing habitat quality for particular species. An example
is the planting of coniferous trees in habitats typical for broadleaved forests (Felton
et al. 2010), which not only affects dependent biota (Pharo and Lindenmayer 2009;
Zerbe and Wirth 2006) but also acidifies the soil and leaches nutrients from it
(Augusto et al. 2002; Finzi et al. 1998). Therefore, assessments of habitat quality in
terms of stand species composition should be not only quantitative (i.e., based on
species richness and diversity) but also qualitative (i.e., based on tree species iden-
tity or functional traits).

Stand structure diversity is crucial for the existence of numerous guilds of organ-
isms (Fig. 10.4). Former forest management practices led to the development of
even-aged, single-layer monocultures (Brockerhoff et al. 2008; Felton et al. 2010)

Fig. 10.4 Structural diversity of forests—multi-age, multi-strata, and multi-species: (a) temperate
lowland primeval forest in Bialowieza Strict Reserve (Poland); (b) temperate mountain forest in
Beskid Niski (Poland); (c) tropical coastal forest in Arabuko Sokoke National Park (Kenya); and
(d) southern boreal mountain forest with Nothofagus spp. in Bernardo O’Higgins National
Park (Chile)
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providing few ecological niches for other organisms. Natural forests are usually
characterized by higher species richness, the presence of multiple generations, and
greater variability of tree dimensions (Lindenmayer et al. 2006; Pretzsch 2009;
Sabatini et al. 2015). Thus, the presence of tree species providing similar substrates
for dependent organisms increases the stability of an ecosystem. For example, in
Biatowieza Primeval Forest in Poland, 88.4% of epiphytic lichens associated with
European ash (Fraxinus excelsior) also occur on alternative hosts, indicating that
ash dieback will not cause cascading local extinction of these lichens (Lubek et al.
2019). Moreover, high trees species richness is usually related to greater understory
diversity (Ampoorter et al. 2015).

High structural diversity maintains the presence of both old and young trees, a
continuity of regeneration (Dyderski et al. 2023), and diversity in resource avail-
ability connected to gap dynamics (Dobrowolska et al. 2022; Doyle 1981). The
presence of veteran trees or habitat trees (Fig. 10.3)—i.e., large trees often partially
damaged by previous disturbances (Gutowski et al. 2022)—is crucial due to their
substantial role in providing numerous microhabitats (Larrieu et al. 2018; Sever and
Nagel 2019; Winter et al. 2015) and hosting many specialized species (Fritz et al.
2009; Kiraly et al. 2013). Even solitary broadleaved trees can serve as significant
hotspots for birds (Pustkowiak et al. 2021) or bryophytes (Wierzcholska et al. 2018).
The diameter distribution of natural stands reveals a J-shaped pattern with a high
density of smaller trees, while managed, even-aged stands are characterized by
Gaussian distribution of diameter at breast height (DBH) (Johnson 1997; Szmyt
et al. 2020; Szmyt and Tarasiuk 2018). Stand structure diversity increases with stand
age (Sabatini et al. 2015) and differs between life stages (Li et al. 2023) (Fig. 10.4).
Structural diversity can also be expressed by spatial patterns of aggregation (clump-
ing), respectively, uniformity of tree distribution (Szmyt 2014; Szmyt and
Tarasiuk 2018).

Another crucial metric for stand structural diversity is the quantity and quality of
deadwood (Gutowski et al. 2022; Lassauce et al. 2011; Lindenmayer et al. 2000;
Oettel and Lapin 2021). Deadwood quantity depends on tree mortality rate and tree
size, but high quantity does not always equate to high quality (Gutowski et al. 2022;
Humphrey et al. 2002; Oettel et al. 2023; Oettel and Lapin 2021), since larger logs
and snags take longer to decompose compared to smaller ones (Holeksa et al. 2008)
(Fig. 10.3). Deadwood serves as a habitat for saproxylic insects and fungi (Gutowski
et al. 2022; Lassauce et al. 2011; Stursovi et al. 2014) as well as for epixylic plants
and lichens (Barkman 1958; Checko et al. 2015; Humphrey et al. 2002; Kiraly et al.
2013; Wierzcholska et al. 2018), with larger-diameter deadwood enabling the sur-
vival of species with long development cycles. Moreover, Kuijper et al. (2013)
found that larger logs and snags in Bialowieza Primeval Forest can simultaneously
serve as a shelter for wolves and escape impediment for ungulates, increasing habi-
tat quality for wolves and shaping regeneration niches for trees by reducing
browsing-related mortality.

The presence of veteran trees and deadwood may be a legacy of preceding natu-
ral disturbances or past management (Gutowski et al. 2022; Johnstone et al. 2010;
Lindenmayer et al. 2000). Disturbances cause damage to a substantial proportion of
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ecosystem biomass, pushing the ecosystem to regenerate (Fox 1979; Herben et al.
2016; Johnstone et al. 2016) (Fig. 10.5). Severe pollution affects tree growth and
leads to mortality, which is reflected in future stand structure (Vacek et al. 2020).
Windthrows lead to the development of pit-and-mound structures, increasing the
diversity of meso- and microhabitats as well as providing regeneration niches
(Czortek et al. 2018; Godziek and Pawlik 2023) (Fig. 10.5). Forest fires juvenilize
the stand structure and open the canopy, enabling the regeneration of pioneer trees
(Clarke et al. 2015; Johnstone et al. 2010).

The effects of former land use on ecosystems can be long-lasting and require a
significant amount of time for recovery (Fig. 10.6). Even after the original land use
has ceased, remnants of past activities can persist for centuries, leaving visible
traces in the landscape. Examples of these remnants include the presence of road
networks, small areas of trees of the same age, or traditional beehives carved in
trees, e.g. pines and oaks (Jaroszewicz et al. 2019). More recent legacies can be
related to post-thinning stumps and a low amount of deadwood as well as veteran
and habitat trees (Baran et al. 2020; Lindenmayer et al. 2000; Oettel and Lapin
2021). The historical land use associated with industrial or agricultural activities
can have significant consequences for habitat biodiversity as well. Recolonization

Fig. 10.5 Natural disturbance legacies in forests: (a) Picea abies forest after a bark-beetle out-
break in the Tatra Mountains (Poland); (b) Betula pendula forest after waterlogging due to beaver
dam building in Poznan (Poland); (¢) Betula pubescens-Prunus tremula pioneer forest emerging in
a raised bog drained and burned 30 years ago near Czaplinek (Poland); (d) Fagus sylvatica clift
forest exposed to chronic winds in Orzechowo Morskie (Poland)
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Fig. 10.6 Management legacies in forests: (a) post-agricultural Pinus sylvestris forest with low
stand density and an understory dominated by grasses and shrubs in O$no Lubuskie (Poland); (b)
post-mining Pinus sylvestris forest with bare soil and low-decomposed litter in Belchatow
(Poland); (c) pits left by peat harvesting in raised bog Betula pubescens forest near Ztocieniec
(Poland); and (d) uniform age and dimension structure of Pinus sylvestris forest after clearcutting
in Tlen (Poland)

of such sites from forest remnants is slow, as specialized species usually have slow
migration rates (Hermy et al. 1999; Peterken 1974). Such legacies can lead to
decreased abundance and numbers of specialized species (De Frenne et al. 2011;
Hiittl and Weber 2001; Rawlik et al. 2018; Wozniak et al. 2022) or decreased viabil-
ity of populations (Woziwoda et al. 2021).

Habitat Quality and Quantity in the Landscape Matrix

Most species are in movement, with individual populations joined within a meta-
population considered a “population” of instable local populations and inhabiting
separated patches of habitat (Hanski 1998). Similar to population dynamics, which
are shaped by mortality and recruitment, metapopulation is shaped by local extinc-
tions and recolonization. The ability to migrate among subpopulations is therefore
crucial for metapopulation persistence (Fig. 10.7). Even migrations of single indi-
viduals between subpopulations can minimize the loss of polymorphism and hetero-
zygosity within them (Mills and Allendorf 1996). In contrast to the classical
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Fig. 10.7 Examples of forest patch connectivity: (a) stepping stones of mature forest remnants in
the matrix of Pinus sylvestris regeneration in Babki Forest Inspectorate (Poland); (b) strip of
mature forest serving as a corridor across Pinus sylvestris regeneration in Tlen Forest Inspectorate
(Poland); (c) strips of Alnus glutinosa connecting small riparian woodland patches in the matrix of
meadows in Gorzkie Pole (Poland); (d) linear corridors of riparian forests connecting the city
center with suburban forest along the Warta river in Poznan (Poland)

metapopulation model assuming random mortality in equally important subpopula-
tions, metapopulations are now usually considered to comprise source and sink
populations with positive and negative demographic balances, respectively. This
difference results from various habitat qualities affecting demographic balance and
lack of habitat selectiveness in high population densities (Allee 1929). In order to
avoid negative density-dependent effects (Janzen 1970; Turczanski et al. 2022),
individuals colonize suboptimal patches of habitat, creating source subpopulations.
Metapopulation can be extended by simplification into island biogeography theory,
assuming that the mainland is a source population while more or less separated
islands host sink populations (MacArthur and Wilson 2001). This theory assumes
that species richness within each habitat island is determined by its area and dis-
tance from the mainland (source population). Such an approach can be useful for
assessing fragmented forest habitats within a matrix of non-forested areas
(Fig. 10.7). However, instead of a single source population, there are often multiple
sources potentially connected by ecological corridors (Banul et al. 2018; Forman
and Godron 1981).
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Assessing habitat spatial structure is important in order to distinguish habitat loss
from habitat fragmentation, which is usually a consequence of the former (Hanski
1998). While habitat loss and fragmentation often occur together, their impacts are
distinctly different. Habitat loss directly decreases the size and viability of popula-
tions, reducing the ecological capacity of the affected area (Ewers and Didham
2005; Hanski 1998), whereas habitat fragmentation is characterized by a decrease
in the number and size of core habitat patches, leading to an increase in the propor-
tion of edge area (Fig. 10.7). On the other hand, fragmentation can also reduce the
risk of total habitat destruction during catastrophic events. Ultimately, the specific
effects of fragmentation thus depend on the spatial structure and connectivity of
patches. The varying impacts of habitat quantity, quality, and connectivity on popu-
lation size and viability pose a dilemma when designing networks for habitat con-
servation. This dilemma arises from the diverse needs and expectations of
stakeholders and the trade-offs between different management approaches within
limited land resources. These constraints may prevent the strict conservation of all
potential habitats. Consequently, when faced with a limited proportion of habitat
available for conservation, a decision must be made whether to conserve a single
large patch or multiple smaller patches; this is commonly referred to as “single large
or several small” (SLOSS) theory (Diamond 1975; Simberloff and Able 1976;
Fahrig et al. 2022). The choice depends on factors such as landscape connectivity,
species requirements, and the desired conservation outcomes. Both approaches
have their advantages and drawbacks, and the optimal choice depends on the spe-
cific context and objectives of the conservation effort. Striking a balance between
habitat size, connectivity, and overall conservation of the landscape is crucial for
effectively preserving biodiversity and maintaining viable populations in the face of
habitat limitations (Cherkaoui et al. 2009; Lomolino 1994; Ovaskainen 2002).
Moreover, several small patches will have smaller core zones and more edge zones,
while a single large patch will not disperse the risk of destruction during stochastic
events. A recent meta-analysis of metacommunities by Riva and Fahrig (2023)
found a twofold greater accumulation of species richness when smaller patches than
larger ones were conserved, suggesting that biodiversity conservation may be most
effective if habitats are composed of as many small patches as possible, plus a few
large ones.

Moreover, the position of habitat patches in the landscape matrix determines spe-
cies migration ability and resource availability (Banul et al. 2018; Forman and
Godron 1981; Thiele et al. 2008). Population viability can depend on habitat quan-
tity, habitat quality, and the spatial arrangement of habitats (Hodgson et al. 2011),
while habitat connectivity is crucial for effective dispersal (Iverson et al. 2004) and
gene flow (Guiller et al. 2023). The effective dispersal distance between subpopula-
tions depends on organism size and dispersal rate. For example, the scale will be in
centimeters for soil mesofauna, in meters for bryophytes, and in kilometers for large
mammals. Species can migrate directly from one patch to another through the sur-
rounding matrix over shorter distances, or through continuous linear structures (cor-
ridors) or discontinuous patches of habitat (stepping stones) that increase potential
movement range between patches by 50% (Gilbert-Norton et al. 2010). Ecological
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corridors can increase the probability of recolonization after catastrophes as well as
increasing gene flow and overall habitat quantity. On the other hand, they can also
lead to a decline in local adaptation in previously isolated subpopulations and facili-
tate the spread of diseases and invasive species (see Chap. 17). This can be the case
with forest remnants connected by rivers, which spread both forest specialists and
ubiquitous invasive species (Burkart 2001; Dyderski et al. 2017; Johansson et al.
1996). Corridors are especially important for specialized species with narrow eco-
logical requirements and limited dispersal rates (Dzwonko 1993; Hermy et al. 1999;
Orczewska and Fernes 2011). Their importance also increases when habitats are
fragmented by dangerous linear objects like motorways (Garrah et al. 2015; Moore
et al. 2023). Matrix quality affects connectivity by increasing the energy required to
overcome unsuitable habitats (Ricketts 2001). For this reason, modeling connectiv-
ity also requires an assessment of matrix permeability (Baldwin et al. 2010), e.g.
using the framework of species distribution models (Ashrafzadeh et al. 2018;
K. Schmidt et al. 2023). Moreover, matrix characteristics affect migration and recol-
onization in the case of isolated patches (Czortek and Pielech 2019; Dyderski
et al. 2017).

Box 10.1 Epiphytic Bryophytes: Indicators of Habitat Quality and Connectivity
Epiphytic bryophytes (Fig. 10.8) are an example of forest specialists indicat-
ing high landscape quality and requiring habitat connectivity for persistence
(Snéll et al. 2004; Wierzcholska et al. 2018). As poikilohydric organisms, they
depend on air and substrate moisture and usually have a narrow ecological
amplitude (Rydin 2008). Therefore, their presence depends on bark physical
and chemical properties as well as on tree species—specific light interception
(Barkman 1958; Jagodzinski et al. 2018). Bark properties evolve through tree
growth, and some species can thus appear only on large or old trees that offer
habitats for them. Despite their high dispersal capacity (e.g., small spores are
carried by wind over long distances), bryophytes’ persistence in managed for-
ests is limited by a small number of large trees forming habitat patches for
them in the forest landscape matrix. As bark can be damaged by biotic and
abiotic disturbances, connectivity between patches of suitable habitat deter-
mines the size of the source population and its viability. In old-growth forests
with many large trees, populations are stable (Fritz et al. 2009; Kirély et al.
2013). However, given habitat connectivity, ancient woodland specialists can
also colonize adjected new forests—even when they are comprised of alien
tree species—and cover post-mining sites, forming sink populations
(Jagodzinski et al. 2018).

(continued)
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Fig. 10.8 Epiphytic bryophytes associated with ancient temperate forests: (a) Porella platyphylla;
(b) Dicranum viride; (¢) Frullania dilatata within a patch of Homalothecium sericeum; (d)
Homalia trichomanoides. All images taken in Biatowieza National Park (Poland)

Conclusions

This chapter reviewed the role of habitat quality and quantity in maintaining ecosys-
tems and populations of target species, discussing the features and metrics of habi-
tats and their landscape context in general. Habitat quantity depends not only on the
size of an occupied habitat patch but also on its shape, proportion of core and edge
area, and temporal dynamics. Habitat quality is related to structural diversity, man-
agement, natural disturbance legacies, and species richness as well as diversity. The
non-linear relationship between population viability and habitat requires the consid-
eration of landscape scale in conservation management. It is necessary to under-
stand the complexities inherent in assessing these features and metrics in order to
support evidence-based conservation strategies and long-term ecosystem
sustainability.
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Abstract

The effects of climate change and biodiversity loss are global and not limited by
national borders, with forest ecosystems, in particular, suffering under increasing
pressure. To preserve and maintain species genetic diversity, well-considered
in situ and ex situ measures are needed. We present a step-by-step guide outlining
the key processes for structuring, performing, and selecting appropriate sustain-
able use and conservation measures for forest genetic resources (FGR). Two case
studies focusing on European white elm (Ulmus laevis Pall.) and wild service
tree (Sorbus torminalis (L.) Crantz), for which the guide was followed, demon-
strate that differences in the regional genetic pattern should be followed when
designing FGR sustainable use and conservation efforts. The fact that seed
orchards can maintain high genetic diversity and provide high-quality, geneti-
cally diverse seed material makes them an optimal supplement to in situ genetic
conservation units. Especially for scattered or threatened tree species, ex situ
measures are of utmost importance. In light of a severe pest outbreak, i.e., ash
dieback, preserving less susceptible ash trees (Fraxinus excelsior L.) is crucial to
enable their reproduction and facilitate gene flow among them to prevent crucial
loss of genetic diversity and eventually the species itself. Therefore, forest
genetic monitoring should be used more intensively to observe, measure, and
assess the long-term FGR conservation efforts as genetic variation is an integral
part of biological diversity, which requires special attention.

Keywords

Forest genetic resources - Sustainable use of FGR - Genetic diversity -
Conservation - GCU - Disease resistance - Gene flow - Forest genetic monitor-
ing - FGM

Introduction

The effects of climate change and biodiversity loss are global and not limited by
national borders, with forest ecosystems, in particular, suffering under increasing
pressure (European Green Deal 2019; Lefevre et al. 2024). According to the New
EU Forest Strategy for 2030, the adaptation of forests to climate change will require
large quantities of appropriate forest reproductive material (FRM) from in situ and
ex situ forest genetic resources/conservation units. Therefore, coordinated efforts
following “best practice” examples will be needed to conserve and sustainably use
forest genetic resources (FGR) on which more climate-adapted forestry depends.
Furthermore, to increase the production and availability of such FRM, policymakers
will need to raise support for research to develop principles and application methods
for in situ and ex situ conservation as well as for assisted forest species migration
where needed (New EU Forest Strategy for 2030).
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Box 11.1 Definition of In Situ and Ex Situ

By definition, in situ conservation means ‘‘the conservation of ecosystems
and natural habitats and the maintenance and recovery of viable populations
of species in their natural surroundings and, in the case of domesticated or
cultivated species, in the surroundings where they have developed their dis-
tinctive properties,” while ex sifu conservation is defined as the conservation
of components of biological diversity outside their natural habitats
(Convention on Biological Diversity, Art. 2; https://www.cbd.int/convention/
articles/?a=cbd-02).

Thus, conservation of FGR can be in sifu dynamic, allowing evolutionary forces
such as selection, mutation, recombination, and gene flow to act; ex situ dynamic
when species or populations are moved and planted outside of their original habitats
or even outside of their natural distribution range (ex situ conservation stand and
seed orchards); or static (ex sifu) when genetic material (seed, pollen, or plant tis-
sues) is stored in gene banks (Forest Genetic Resources Strategy for Europe, 2021).
Following the Forest Genetic Resources Strategy for Europe (2021), in situ conser-
vation should be a priority and the primary conservation strategy for FGR since it
enables evolution and local adaptation.

However, effective conservation of FGR requires a combination of both in situ
and ex situ (dynamic and static) methods to be applied, as outlined in the Forest
Genetic Resources Strategy for Europe (2021). This strategy is integrated, for
example, into the concept for the conservation and sustainable use of FGR in
Bavaria (Generhaltungskonzept 2015), which is based on the “Concept for the
Conservation of Forest Genetic Resources in the Federal Republic of Germany”
(Paul et al. 2000). Coordination of forest genetic resources selection, use, and con-
servation efforts in the Federal Republic of Germany has been led by a federal state
working group (BLAG-FGR) since 1985. With the development of the
“Recommendations for the Designation of Gene Conservation Units, Taking
Minimum Criteria into Account,” the procedure for recording and designating
in situ gene conservation was defined (BLAG-FGR, status 01/2017). These recom-
mendations align with the guidelines set forth by the European Forest Genetic
Resources Conservation Programme (EUFORGEN).

Both ex situ and in situ conservation measures require decisions on which popu-
lations to select or sample (Ledig 1986). To optimize the conservation network and
its management activities, it is important to accumulate relevant knowledge on spe-
cies ecology, biology, distribution, and patterns of genetic variation (Ledig 1986 and
references therein). According to Neel and Cummings (2003), if a selection of gene
conservation units (GCU) is made without data on genetic variation, then larger
sample sizes within each population and larger numbers of populations are needed
to ensure the conservation of genetic diversity and representation of rare and com-
mon alleles. Thus, following Ledig (1986), a common method to select GCUs with-
out genetic information would be to select populations representing different
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environments or habitats, which are most likely to contain most of the species’
genetic variation. However, this type of conservation requires intensive selection of
larger conservation units from different environments, and the consent of different
forest owners is often necessary. In addition, the protection of individual trees as
well as small and marginal populations of scattered tree species should also be con-
sidered in the process of selection for conservation since they can possess specific
genetic variants and are needed to ensure connectivity among population fragments
(Ledig, 1986; Bednorz 2007).

Since biotechnologies including various genotyping techniques have become
cheaper and more efficient, DNA analysis after systematic sampling from different
environments can be used to map the patterns of spatial genetic structure (gene
pools) across a species’ natural distribution range. Collected information and
genetic diversity measures provide information on genetic variability within and
among populations, allowing the optimized choice of populations for species con-
servation and the use of FGR to be optimized (Marshall and Brown 1975; Ledig,
1986; Hettemer 1995; Petit et al. 1998; Rajora and Mosseler 2001; Caballero et al.
2010; Koskela et al. 2013; Schueler et al. 2014; de Vries et al. 2015). Extensive
sampling combined with DNA analysis can thus lead to a well-supported number
and selection of populations needed for actual conservation measures (Ledig 1986
and references therein). There are numerous such examples for various tree species
in Europe, like Sorbus torminalis (Demesure et al. 2000; Hoebee et al. 2006;
Bednorz and Kosinski 2006; Bednorz 2007; Kucerova et al. 2010; Kavaliauskas
et al. 2021; etc.), Ulmus laevis (Collin and Bozzano 2015; Collin et al. 2020;
Kavaliauskas et al. 2022a; etc.), Taxus baccata (geho et al. 2022; Komarkova et al.
2022; Linares 2013; Klumpp et al. 2011; Dubreuil et al. 2010), Pinus spp. (Gonzélez-
Martinez et al. 2004; Dzialuk et al. 2014; Pyhijarvi et al. 2020; Kavaliauskas et al.
2022b; etc.), Fagus sylvatica (Lefevre et al. 2013; von Wuehlisch 2008; Vornam
et al. 2004), and Quercus spp. (de Dato et al. 2018; Lefevre et al. 2013; Ducousso
and Bordacs 2004).

IUCN has formulated different management categories for protected areas to
comply with the purpose of protection (IUCN 1994; Dudley et al. 2010). Several
conservation programs exist for forest trees (White et al. 2007). However, the selec-
tion of conservation strategies and GCUs for specific tree species depends on many
factors such as species biology (e.g., pollination type), ecology (e.g., species rarity
and scatteredness), genetic structure (e.g., genetic variation within and among pop-
ulations), and external factors including forestry policies, ownership, economic
importance, risk of extinction, etc. The Forest Genetic Resources Strategy for
Europe (2021) underlines that GCUs (in situ and ex situ together) are the key ele-
ments in the pan-European network for the dynamic conservation of FGR and that
the distribution and coverage of GCUs must be expanded to cover as many species
and their genetic diversity as possible, including rare tree species and marginal pop-
ulations at the boundaries of natural distributions. Furthermore, active GCU moni-
toring and maintenance through management, if necessary, must maintain
evolutionary processes and increase the adaptability of selected tree populations.
Regular genetic monitoring is needed to assess the effective population size and



11 In Situ and Ex Situ Conservation Measures 217

identification of target iree disiribution

1 Drararmining the digmibubion of isgst treas in 8 particelar arsa
Stand assessment
. secording 10 sesd siand sElsction ooy [e.g. numbsr of
wiaghle/reproducing traes, DB, height, stem lorm, els
3 Reprasantative sampling
of thié siand for ganetic anatyais
Comparison
4 of goeneise disety smong natual popetstions, the sxrsiing seed
orchada, nnd nowly asiecied plus treag
Dalineation
5 ol gene conservalich regions based on genatic Silemntiston
Daliwaran gune |]:KJ|5
6 Priarity selting
assrasmand of conssvalion worthiness and urgency
Selection ol consanvalion maasure
7 in sy, ox gy
Selection of plus trees (ex situ) Identitication of candidate GCUs (in situ!
and sstobdishment of gaod archard hasad on generic markers level ol gensrc dversiy!
Fig. 11.1 A step-by-step guide to conservation of FGR including the choice of measure (in situ or

ex situ)

reproduction capabilities of GCUs and their ability to adapt under changing envi-
ronmental conditions (Fussi et al. 2016; Bajc et al. 2020, Liesebach et al. 2024,
Forest Genetic Resources Strategy for Europe 2021). In the following, we will dis-
cuss in situ and ex situ conservation measures with examples for dominant and scat-
tered tree species (Fig. 11.1).

Anthropogenic disturbances have negative consequences for genetic diversity
and the adaptive potential of species (Aravanopoulos 2018; Kavaliauskas et al.
2018; Gautam et al. 2021, Lefevre et al. 2024). A high level of genetic diversity is
the basis for the adaptation and adaptability of FGR and must therefore be main-
tained for the future. Conservation of FGR aims to improve the genetic diversity and
adaptability of forest stands over time, and forest genetic monitoring (FGM) pro-
vides us with information on the conditions and changes in the forest genetic system
(Fussi et al. 2016, Bajc et al. 2020). Modern forestry is based on the prudent use of
FGR. The basis of silvicultural activity is the conservation and improvement of the
various forest functions and the conservation of biological diversity at all levels.
Assignment of a forest stand as a seed stand can enhance the usage and spread of a
species, thereby increasing its distribution and preventing further fragmentation of
its range.

Following the flowchart in Fig. 11.1, certain steps should be taken prior to mak-
ing decisions on species conservation. First, information on the existing populations
of the target species should be gathered. Species distribution maps, data from forest
inventories, and surveys among forest owners can help collect all the relevant details
on the species in a certain area. Based on the collected data, stands should be sorted
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according to minimum requirements and then visited and evaluated using a prede-
signed routine. Photographs of the potential stands facilitate comparison between
them. Stand size and tree numbers depend on the tree species and the conservation
objectives. Koskela et al. (2013) suggested minimum sizes of the GCUs to be set at
500, 50, or 15 reproducing individuals for stand-forming scattered and endangered
tree species, respectively. Potential stands should be vital and possess good to very
good quality (e.g., height growth, form, and vigor), and a minimum of 50 individu-
als of the target species should be present in each stand or within gene flow distance.
These 50 trees should be of reproductive age. If flowering or fructification cannot be
assessed directly, the DBH or crown size can serve as a proxy (DBH > 20 cm for
most tree species). The more reproducing trees are present, the higher the potential
for new genetic genotypes/combinations. Gene conservation for forestry purposes
may also include attributes like the ability to harvest seeds from the stand or a mini-
mum distance to poor phenotypes of 400 m (recommendations according to German
FoVG, 2003). Information on the autochthony of the origin of the populations is
also beneficial. Following this initial evaluation of the stands, populations to be
sampled for genetic analysis should be preselected. In addition, species distribution
should be considered for representative sampling. Sampling for genetic analysis
should ideally be systematic to cover the entire population and include at least 50
reproducing trees with a minimum distance of 30 m between sampled individuals.
The genetic analysis provides an overview of the species’ genetic variation and
spatial genetic structure and can help identify hotspots of genetic diversity. Several
genetic diversity parameters can be used for comparison and prioritization of differ-
ent populations. Following Marshall and Brown (1975), Petit et al. (1998), Rajora
et al. (2000), Rajora and Mosseler (2001), and Caballero et al. (2010), we consider
the allelic richness (Ar) value (number of different alleles segregating in the popula-
tion) to be of key importance in conservation programs, especially for subdivided
and scattered tree species. Therefore, we suggest Ar as the main parameter for GCU
selection. In addition, the measure of effective population size (Ne) is a critical veri-
fier in the selection and conservation of forest genetic resources (Lande and
Barrowclough 1987, Santos-del-Blanco et al. 2022, Hoban et al. 2023, Liesebach
et al. 2024, etc.). Estimates of contemporary effective population size (Ne) can pro-
vide valuable information for genetic conservation and monitoring, pinpointing
populations at higher risk of genetic erosion, decreased fitness, maladaptation, and
ultimately, demographic decline (Santos-del-Blanco et al. 2022 and references
therein). In conservation genetics, Ne is important because it influences the rate at
which genetic diversity is lost (e.g., due to genetic drift). Thus, small populations of
scattered and threatened tree species are susceptible to genetic drift, leading to a
faster loss of genetic diversity and an increased risk of inbreeding depression and
the accumulation of deleterious mutations. Therefore, Ne should serve as a crucial
measure for FGR selection and is essential for preserving genetic diversity, ensuring
the long-term viability of populations, and formulating necessary action plans
(Santos-del-Blanco et al. 2022, Pérez-Pereira et al. 2022 and references therein,
Hoban et al. 2023).
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The required number of populations to conserve as GCUs within a species
depends on how diversity is divided within and among populations, which measure
of diversity is chosen, and how much of the total diversity is considered sufficient
(Neel and Cummings 2003). According to Neel and Cummings (2003), a greater
number of populations is required to conserve genetic diversity if GCUs are selected
without genetic information. The selection of GCUs should therefore be based on
collective data of genetic diversity, environmental data, and tree/population distri-
bution in certain regions to ensure gene flow among populations and sufficiently
high genetic diversity. Moreover, genetic differentiation among populations may be
used as one of the measures for GCU selection, even if some populations do not
exhibit the required level of genetic diversity, since some of them may possess rare
alleles and genotypes (Bednorz 2007; Jost et al. 2018). However, due to the high
costs of genetic analysis, target areas and species might be prioritized and selected.

Species and population prioritization consider endangerment status and allow
decisions regarding the urgency of conservation measures. From an ecological or
economic point of view, valuable populations of a species that are adapted to their
site conditions and harbor high genetic variability should be the focus for genetic
conservation. For dominant tree species, in addition to vitality and the presence of
natural regeneration, above-average stem quality and growth characteristics can
also be considered important criteria for selection for conservation. An assessment
of conservation necessity should be conducted for populations at high risk of extinc-
tion or decline. Within the group of rare and ecologically important tree species, the
focus lies on the assessment of conservation urgency at the species level. For exam-
ple, the guideline for the conservation and sustainable use of forest genetic resources
in Bavaria (Germany) defines three priority levels:

1. Species of high priority—gene conservation measures are urgently needed.

2. Species of medium priority—gene conservation measures are needed but
not urgent.

3. Species of low priority—gene conservation measures are currently not needed.

The endangerment of a population can be determined by estimating the follow-
ing risk factors, some of which mutually influence each other or increase multiple
risks when they coincide:

— Actual population size, minimum viable population size, and effective popula-
tion size: For example, the minimum size for a viable population often has been
used as a crucial measure in conservation practice to determine the extinction
risks of populations and species. An effective population size of at least 50 unre-
lated and reproducing individuals (Ne = 50) is needed to minimize the risk of
extinction due to inbreeding depression, and Ne of 500 individuals is required for
a population’s long-term survival (Pérez-Pereira et al. 2022 and references
therein). The smaller the population, the higher the risk of extinction through
drift effects (e.g., natural disaster and disease incidence).

— Deviation from the potential natural vegetation: The further the current popula-
tion is from the optimal distribution (suitable ecological niche) for its species, the
higher the risk of extinction (Aitken et al. 2008; Gougherty et al. 2021, etc.).
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— Weakness in competition: Competition from precocious, more competitive spe-
cies increases the risk of decline.

— Disposition to diseases/disasters: Species whose existence is threatened by dis-
eases/disasters are at increased risk.

— Hybridization with cultivars: Plantations of cultivars in the immediate vicinity of
gene conservation objects pose a threat to the gene resource through introgres-
sion (e.g., wild cherry, wild apple, wild pear, small-leaved lime, etc.).

— Loss of forest areas leads to a reduction in effective population size, as well as
making gene flow more difficult due to habitat fragmentation.

— Browsing of natural regeneration limits the genetic preservation of GCU since
establishing new tree generations becomes challenging.

Following the prioritization of populations, the appropriate conservation mea-
sures must be chosen. These can be in sifu or ex situ measures or a combination of
both depending on the circumstances; possible approaches are described in the
following.

In Situ Conservation Measures

Species with an adequate number of viable populations within their natural distribu-
tion range can be considered for in situ conservation. The objective should be to
conserve the genetic variation, facilitate the natural regeneration of the GCU, or
conduct artificial regeneration with reproductive material taken from the same pop-
ulation. In situ measures offer the advantage that they can be integrated into regular
forest management (forest management planning corresponding to GCU conserva-
tion aims).

By contrast, rare tree species should generally be completely protected from
exploitation, with only minor exceptions granted if populations meet specific crite-
ria, which ensures population continuity, such as the presence of natural regenera-
tion, compliance with viable population size standards, etc. Different populations of
a rare species often have unique genetic compositions, making the loss of any popu-
lation an irreparable genetic loss (e.g., because of lost locally adapted genetic varia-
tion, interrupted connectivity, and gene flow). For most rare species, GCUs are an
absolute necessity to protect the FGR, and additional ex sifu preservation is also
required to reduce the risk of sudden loss through drift effects (e.g., catastrophic
events like fire or landslides). Common tree species are often genetically variable
but are generally exploited more intensively, and po